Introduction 00000	Proposed Method	Experiments 000000	Reference: 00
	Semi-supervised tra using La	ining of Acoustic Models ttice-free MMI	

Vimal Manohar^{1,2}, Hossein Hadian¹, Daniel Povey^{1,2}, Sanjeev Khudanpur^{1,2}

¹Center for Language and Speech Processing ²Human Language Technology Center of Excellence Johns Hopkins University, Baltimore, USA

ICASSP '18

Introductio	

Proposed Method

Outline

- Semi-supervised tranining
- Lattice-free MMI

2 Proposed Method

Semi-supervised Lattice-free MMI

Experiments 3

.∋...>

Introduction ●0000	Proposed Method	Experiments 000000	References
Semi-supervised tranining			
Outline			JOHNS HOPKINS

• Semi-supervised tranining

Lattice-free MMI

2 Proposed Method

• Semi-supervised Lattice-free MMI

3 Experiments

- Speech recognition is a sequence prediction task
- Sequence training using CTC¹, Lattice-free MMI²
- Requires large amount of training data to be better than CE³

Introduction 00000	Proposed Method 00000	Experiments 000000	References
Semi-supervised tranining			
Semi-supervised	training - Motivatio	ns	JOHNS HOPKINS

Why do we want to use unsupervised data?

- Availability of exponentially large amounts of unsupervised acoustic data
- Interests in speech recognition in low-resource languages
- Test data changes with time (i.e. new domains)

Introduction 00000	Proposed Method 00000	Experiments 000000	References 00
Lattice-free MMI			
Outline			JOHNS HOPKINS

• Semi-supervised tranining

Lattice-free MMI

2 Proposed Method

• Semi-supervised Lattice-free MMI

3 Experiments

Introduction ○○○○●	Proposed Method	Experiments 000000	References 00
Lattice-free MMI			
Lattico fron			IOHNS HOPKINS

$$egin{aligned} \mathcal{F}_{\mathsf{MMI}} \propto \sum_{\mathcal{D}} \log rac{P_{\mathcal{A}}(\mathbf{O} \mid W_{\mathsf{ref}})}{\sum_{W} P_{\mathcal{A}}(\mathbf{O} \mid W) P_{\mathcal{L}}(W)} \ &= \sum_{\mathcal{D}} \log rac{\sum_{\pi \in \mathcal{G}_{\mathsf{Num}}(W_{\mathsf{ref}})}{P(\pi)} P(\pi)}{\sum_{\pi \in \mathcal{G}_{\mathsf{Den}}} P(\pi)} \end{aligned}$$

- Numerator graph:
 - Created from a lattice of alternate pronunciations
 - Allow a tolerance (±20ms) on phones

- Denominator graph:
 - Forward-backward over a full HMM (HCG graph)
 - No need of dumping lattices
- Trainable from scratch
- Denominator computation in GPU:
 - Output at 33Hz frame rate
 - 1.5s chunks
 - 4-gram phone LM instead of word LM

⁴Povey et al. 2016

Center for Language and Speech Processing

ICASSP '18

Introduction ○○○○●	Proposed Method	Experiments 000000	References 00
Lattice-free MMI			
Lattico fron			IOHNS HOPKINS

$$egin{aligned} \mathcal{F}_{\mathsf{MMI}} \propto \sum_{\mathcal{D}} \log rac{P_{\mathcal{A}}(\mathbf{O} \mid W_{\mathsf{ref}})}{\sum_{W} P_{\mathcal{A}}(\mathbf{O} \mid W) P_{\mathcal{L}}(W)} \ &= \sum_{\mathcal{D}} \log rac{\sum_{\pi \in \mathcal{G}_{\mathsf{Num}}(W_{\mathsf{ref}})}{P(\pi)} P(\pi)}{\sum_{\pi \in \mathcal{G}_{\mathsf{Den}}} P(\pi)} \end{aligned}$$

• Numerator graph:

- Created from a lattice of alternate pronunciations
- Allow a tolerance (±20ms) on phones

- Denominator graph:
 - Forward-backward over a full HMM (HCG graph)
 - No need of dumping lattices
- Trainable from scratch
- Denominator computation in GPU:
 - Output at 33Hz frame rate
 - 1.5s chunks
 - 4-gram phone LM instead of word LM

⁴Povey et al. 2016

Center for Language and Speech Processing

ICASSP '18

Introduction ○○○○●	Proposed Method	Experiments 000000	References 00
Lattice-free MMI			
Lattice free			IOHNS HOPKINS

$$egin{aligned} \mathcal{F}_{\mathsf{MMI}} \propto \sum_{\mathcal{D}} \log rac{P_{\mathcal{A}}(\mathbf{O} \mid W_{\mathsf{ref}})}{\sum_{W} P_{\mathcal{A}}(\mathbf{O} \mid W) P_{\mathcal{L}}(W)} \ &= \sum_{\mathcal{D}} \log rac{\sum_{\pi \in \mathcal{G}_{\mathsf{Num}}(W_{\mathsf{ref}})}{P(\pi)} P(\pi)}{\sum_{\pi \in \mathcal{G}_{\mathsf{Den}}} P(\pi)} \end{aligned}$$

- Numerator graph:
 - Created from a lattice of alternate pronunciations
 - Allow a tolerance (±20ms) on phones

- Denominator graph:
 - Forward-backward over a full HMM (HCG graph)
 - No need of dumping lattices
- Trainable from scratch
- Denominator computation in GPU:
 - Output at 33Hz frame rate
 - 1.5s chunks
 - 4-gram phone LM instead of word LM

⁴Povey et al. 2016

Center for Language and Speech Processing

ICASSP '18

Introduction 00000	Proposed Method •0000	Experiments 000000	References 00
Semi-supervised Lattice-free MMI			
Outline			Johns Hopkins

• Semi-supervised tranining

Lattice-free MMI

Proposed Method

• Semi-supervised Lattice-free MMI

3 Experiments

Supervised training

Semi-supervised training

$$\mathcal{F}_{\mathsf{MMI}} \propto \sum_{\mathcal{D}} \log rac{P_A(\mathbf{O} \mid W_{\mathsf{ref}}) P_L(W_{\mathsf{ref}})}{\sum_W P_A(\mathbf{O} \mid W) P_L(W)} = \sum_{\mathcal{D}} \log rac{\sum_{\pi \in \mathcal{G}_{\mathsf{Num}}(W_{\mathsf{ref}})} P(\pi)}{\sum_{\pi \in \mathcal{G}_{\mathsf{Den}}} P(\pi)}$$

Supervised training

Semi-supervised training

$$\begin{array}{c} & \mathcal{F}_{\mathsf{MMI}} \propto \sum_{\mathcal{D}} \log \frac{\sum_{W \in \mathcal{H}} P_{A}(\mathbf{O} \mid W) P_{L}(W)}{\sum_{W} P_{A}(\mathbf{O} \mid W) P_{L}(W)} \\ & = \sum_{\mathcal{D}} \log \frac{\sum_{\pi \in \mathcal{G}_{\mathsf{Num}}(\mathcal{H})} P(\pi)}{\sum_{\pi \in \mathcal{G}_{\mathsf{Den}}} P(\pi)} \end{array}$$

Phone lattice (G) created from the lattice of word hypotheses *H*

- Compose HMM (H), Context-dependency (C) and phone lattice (G) into a HCG graph
- **③** Constrain phones to $\pm 30ms$ of their position in lattice
- Split into 1.5s chunks

・ 同 ト ・ ヨ ト ・ ヨ ト

Introduction 00000	Proposed Method 000●0	Experiments 000000	References
Semi-supervised Lattice-free MMI			
Lattice splitting			Johns Hopkins

- $\bullet\,$ Chunking into ${\sim}1.5s$ for minibatch training
- Naive splitting: Relative costs of paths are lost
- Smart splitting: Split lattice directly
 - Add initial and final scores to the chunks
 - Alpha and beta scores using forward-backward on lattice

- $\bullet\,$ Chunking into ${\sim}1.5s$ for minibatch training
- Naive splitting: Relative costs of paths are lost
- Smart splitting: Split lattice directly
 - Add initial and final scores to the chunks
 - Alpha and beta scores using forward-backward on lattice

- In baseline, we use 4-gram phone LM scores used for denominator graph
- Graph scores (Word LM scores) from lattice
- $\bullet\,$ Interpolate with weight λ on word LM

Introduction 00000	Proposed Method

Outline

- Semi-supervised tranining
- Lattice-free MMI

Proposed Method

• Semi-supervised Lattice-free MMI

3 Experiments

(B)

Experiments 00000

Experimental Setup

Setup:

- Fisher English corpus:
 - Supervised data: 15 or 50 hours
 - Unsupervised data: 250 hours
- Time-delay neural network (TDNN)
- i-vectors for speaker adaptation

Semi-supervised training:

- 4-gram word LM for generating lattices for unsupervised data – trained on 1250 hours transcripts
- Supervised and unsupervised data in different minibatches
- Per-frame weighting based on confidence of best path ⁵

⁵Vesely et al. 2013

Center for Language and Speech Processing

Introduction	Proposed Method	Experiments	References
00000	00000	00●000	00

Results – LM scale and beam size

- 15hrs sup + 250hrs unsup
- λ weight on word LM scores vs. phone LM scores
- WER Recovery rate (WRR) ⁶

Supervision type	λ	beam	dev	test	WRR (%)
Supervised only	0.0	-	29.4	29.2	0
Best transcript	0.0	0.0	23.0	23.2	55
Smart split		2.0	22.5	22.5	60
Smart split		4.0	22.4	22.6	60
Smart split	0.5	2.0	22.5	22.4	60
Smart split	0.5	4.0	22.0	21.9	65
Smart split	0.5		22.1	22.2	63
Oracle	0.0	-	17.9	18.0	100

⁶Ma and Schwartz 2008

15 / 22

Center for Language and Speech Processing

ICASSP '18

Introduction	Proposed Method	Experiments	References
00000	00000	00●000	00

Results – LM scale and beam size

- 15hrs sup + 250hrs unsup
- λ weight on word LM scores vs. phone LM scores
- WER Recovery rate (WRR) ⁶

Supervision type	λ	beam	dev	test	WRR (%)
Supervised only	0.0	-	29.4	29.2	0
Best transcript	0.0	0.0	23.0	23.2	55
Smart split	0.0	2.0	22.5	22.5	60
Smart split		4.0	22.4	22.6	60
Smart split	0.5	2.0	22.5	22.4	60
Smart split	0.5	4.0	22.0	21.9	65
Smart split	0.5		22.1	22.2	63
Oracle	0.0	-	17.9	18.0	100

⁶Ma and Schwartz 2008

ICASSP '18

Center for Language and Speech Processing

Introduction	Proposed Method	Experiments	References
00000	00000	00●000	00

Results – LM scale and beam size

- 15hrs sup + 250hrs unsup
- $\bullet~\lambda$ weight on word LM scores vs. phone LM scores
- WER Recovery rate (WRR) ⁶

Supervision type	λ	beam	dev	test	WRR (%)
Supervised only	0.0	-	29.4	29.2	0
Best transcript	0.0	0.0	23.0	23.2	55
Smart split	0.0	2.0	22.5	22.5	60
Smart split	0.0	4.0	22.4	22.6	60
Smart split	0.5	2.0	22.5	22.4	60
Smart split	0.5	4.0	22.0	21.9	65
Smart split	0.5	8.0	22.1	22.2	63
Oracle	0.0	-	17.9	18.0	100

⁶Ma and Schwartz 2008

Center for Language and Speech Processing

ICASSP '18

Introduction	Proposed Method	Experiments	References
		000000	

Results – Phone sequence alternatives

- Multiple pronunciations per word
- Optional silence after the word
- 15hrs sup + 250hrs unsup
- Smart split beam = 4.0 and LM scale λ = 0.5

Supervision type	Alternatives	dev	test	WRR(%)
Supervised only	Y	29.4	29.2	0
Best transcript	N	23.0	23.2	55
Best transcript	Y	22.5	22.3	61
Smart split	N	22.0	21.9	65
Smart split	Y	21.8	21.6	67
Oracle	Y	17.9	18.0	100

Center for Language and Speech Processing

16 / 22

ICASSP '18

🔜 Johns Hopkins

Introduction	

Experiments 0000●0

JOHNS HOPKINS

Results – 15 vs 50 hours

- 250 hours unsupervised data
- 15 hours vs 50 hours supervised data
- WER Recovery Rate is similar even for 50 hours case

	15 hours sup				50 hou	rs sup
System	dev	test	WRR (%)	dev	test	WRR (%)
Supervised only	29.4	29.2	0	22.6	22.0	0
Best transcript	23.0	23.2	55	20.0	19.8	52
Naive split	22.4	22.1	62	19.5	19.5	60
Smart split	22.0	21.9	65	19.6	19.6	59
Oracle	17.9	18.0	100	17.6	17.9	100

Introduction

Results – 15 vs 50 hours

- 250 hours unsupervised data
- 15 hours vs 50 hours supervised data
- WER Recovery Rate is similar even for 50 hours case

	15 hours sup				50 hou	rs sup
System	dev	test	WRR (%)	dev	test	WRR (%)
Supervised only	29.4	29.2	0	22.6	22.0	0
Best transcript	23.0	23.2	55	20.0	19.8	52
Naive split	22.4	22.1	62	19.5	19.5	60
Smart split	22.0	21.9	65	19.6	19.6	59
Oracle	17.9	18.0	100	17.6	17.9	100

Introduction

Experiments 0000●0

Results – 15 vs 50 hours

- 250 hours unsupervised data
- 15 hours vs 50 hours supervised data
- WER Recovery Rate is similar even for 50 hours case

	15 hours sup			50 hours sup		
System	dev	test	WRR (%)	dev	test	WRR (%)
Supervised only	29.4	29.2	0	22.6	22.0	0
Best transcript	23.0	23.2	55	20.0	19.8	52
Naive split	22.4	22.1	62	19.5	19.5	60
Smart split	22.0	21.9	65	19.6	19.6	59
Oracle	17.9	18.0	100	17.6	17.9	100

Conclusions

- Proposed semi-supervised extension to lattice-free MMI
 - Explored methods for creating lattice supervision
 - Smart splitting and adding frame tolerance
 - WER recovery rate of 60-67% using lattice supervision
 - $\bullet\,$ Around 5% absolute better than using only the best transcript
- As future work:
 - Use RNNLM for decoding unsupervised data
 - Investigate on larger datasets
 - Investigate mismatch data and presence of OOV

Introduction	Proposed Method	Experiments	References
00000		000000	00
Deferences			Johns Hopkins

- [1] Alex Graves et al. "Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks". 2006.
- [2] Daniel Povey et al. "Purely Sequence-Trained Neural Networks for ASR Based on Lattice-Free MMI". 2016.
- [3] Golan Pundak and Tara N Sainath. "Lower Frame Rate Neural Network Acoustic Models.". 2016.
- [4] Karel Vesely et al. "Semi-supervised training of deep neural networks". 2013.
- [5] Jeff Ma and Richard Schwartz. "Unsupervised versus supervised training of acoustic models". 2008.

- [6] L. Bahl et al. "Maximum Mutual Information Estimation of Hidden Markov Model parameters for Speech Recognition". 1986.
- [7] D. Povey. "Discriminative Training for Large Voculabulary Speech Recognition". 2004.
- [8] Mehryar Mohri et al. "Speech recognition with weighted finite-state transducers". 2008.
- [9] Daniel Povey et al. "The Kaldi speech recognition toolkit". 2011.
- [10] Lambert Mathias et al. "Discriminative Training of Acoustic Models Applied to Domains with Unreliable Transcripts.". 2005.

Introduction	Proposed Method	Experiments	References
00000	00000	000000	●0

Thank you!

∃ ► < ∃ ►</p>

æ

Experiments 000000

Frame tolerance

Smart splitting:

- Allow phones to occur slightly before or ahead
- Compose with a special FST that simulates inserting or deleting self-loops in HMM:
- ± 1 frame = ± 30 ms

.∋...>

22 / 22