Towards Language-Universal End-to-End Speech Recognition

Suyoun Kim¹, and Michael L. Seltzer²

¹Carnegie Mellon University

²Facebook (formerly Microsoft AI & Research)

ICASSP April 18, 2018 Presenter: Suyoun Kim

Outline

- Motivation of Language-universal end-to-end speech recognition
- Proposed model: language-specific gated network
- Experimental evaluation
- Conclusions

Challenges of growing language coverage of ASR systems

- There are over 6,000 languages globally
- 1) Conventional ASR requires each model be trained independently
 - Effort to train, deploy, and maintain so many models in production increases
- 2) For second and third tier languages, additional challenges arise
 - Lack of sufficient training data
 - Lack of linguistic expertise, lexicons

Prior work: multi-lingual acoustic models

- Transfer learning approach:
 - Share language-independent lower layer(s)
 - Separate language-specific output layer(s)

- ✓ Pools data to train common parameters
- Improved performance with (very) little training data
- **×** Requires pronunciation lexicon
- * Improvement diminishes with increased data

Key insights

1) End-to-end with CTC

2) Universal character set

3) Languagespecific gating

Key insights

1) End-to-end with CTC¹

No pronunciation lexicon required

 Convert a sequence of features to a sequence of graphemes rather than senones

Key insights

2) Use a universal character set

- Share model parameters and even output layer among languages
 - Single system capable of recognizing any language it has been trained on
- Assume language identity is known in training and decoding
- Mask out the activation from unwanted characters

Union Labels

"Universal keyboard" shares common characters

Experiment setup

- Data
 - Cortana data in English (EN), Spanish (ES), and German (DE)
 - 150 hour training set, 10 hour dev set, 10 hour test set, per language
- Model:
 - Input: 80-dimensional log mel filterbank x 3
 - Output: characters (graphemes)¹ EN: 81d, DE: 93d, ES: 97d
 - 4 layer BLSTM (320 cells)
- Training and Decoding
 - CTC with SGD with fixed learning rate, early stopping, random initialization
 - Greedy decoding with no explicit language model

Initial evaluation:

Training	Total	Model	Test	CER
Languages	Hrs	Arch	Lang	%
DE	150			23.3
DE + EN	300	mtl		22.3
DE + EN	300	univ	DE	22.5
DE + EN + ES	450	univ		22.8
DE	300			15.8
ES	150			13.7
ES + EN	300	mtl		13.1
ES + EN	300	univ	ES	12.9
ES + EN + DE	450	univ		13.1
ES	300			11.7

1. Small gain by adding different EN training source

Initial evaluation: multi-task vs. union architectures

Training	Total	Model	Test	CER
Languages	Hrs	Arch	Lang	%
DE	150			23.3
DE + EN	300	mtl		22.3
DE + EN	300	univ	DE	22.5
DE + EN + ES	450	univ		22.8
DE	300			15.8
ES	150			13.7
ES + EN	300	mtl		13.1
ES + EN	300	univ	ES	12.9
ES + EN + DE	450	univ		13.1
ES	300			11.7

- 1. Small gain by adding different EN training source
- 2. Separate labels (mtl) and universal labels (univ) perform comparably

Initial evaluation: No improvement increasing from 2 langs. to 3 langs.

Training	Total	Model	Test	CER
Languages	Hrs	Arch	Lang	%
DE	150			23.3
DE + EN	300	mtl		22.3
DE + EN	300	univ	DE	22.5
DE + EN + ES	450	univ		22.8
DE	300			15.8
ES	150			13.7
ES + EN	300	mtl		13.1
ES + EN	300	univ	ES	12.9
ES + EN + DE	450	univ		13.1
ES	300			11.7

- 1. Small gain by adding different EN training source
- 2. Separate labels (mtl) and universal labels (univ) perform comparably

3. No improvement increasing from 2 languages to 3 languages

Key insights

1) End-to-end with CTC

No pronunciation lexicon required

2) Universal character set

- Single system
- Easy to maintain

3) Languagespecific gating

• Further improvement with more data

3) language-specific gating

- Motivation: model needs to adequately capture language-specific information
 - Adding language ID indicator (bias) gives minimal improvement
- => Add language-specific gating mechanism
 - Modulate internal representations in a language-specific way
 - Fewer parameter than cluster adaptive training (CAT)¹²

¹ Li et al., multi-dialect speech recognition with a single sequence-to-sequence model, 2018
² Tan et al., cluster adaptive training for deep learning network based acoustic model, 2016

3) language-specific gating: implementation details

1. Define one-hot language indicator vector d_l

 $d_l = [0 \ 0 \ 1]$

2. Compute gate for i^{th} hidden layer

 $g(h_i, l) = \sigma(\mathbf{U}h_i + \mathbf{V}d_l + \mathbf{b})$

3. Compute language-gated activation

 $\hat{h}_i = g(h_i, l) \odot h_i$

4. Gated activations and d_l input to next layer

$$\tilde{h}_i = [\hat{h}_i \colon d_l]$$

EN evaluation: 10.7% rel. impr. in CER, 7.0% rel. impr. in WER

- without Gate, no benefit increasing from 2 languages to 3 languages
- with Gate, additional gain increasing from 2 languages to 3 languages

DE evaluation: 11.4% rel. impr. in CER, and 8.6% rel. impr. in WER

- without Gate, no benefit increasing from 2 languages to 3 languages
- with Gate, additional gain increasing from 2 languages to 3 languages

ES evaluation: 14.1% rel. impr. in CER, and 11.1% rel. impr. in WER

- without Gate, no benefit increasing from 2 languages to 3 languages
- with Gate, additional gain increasing from 2 languages to 3 languages

Different ways to add language information to the model

- Adding one-hot language ID input gives minimal improvement (+ 0.1M parameters)
- Proposed approach results in the largest improvement, (+ 0.5M parameters, much fewer than *cluster adaptive training*¹²)

¹ Li et al., multi-dialect speech recognition with a single sequence-to-sequence model, 2018
² Tan et al., cluster adaptive training for deep learning network based acoustic model, 2016

Language-universal model can be a good initial model for creating a language-specific model

Initial Model	Fine Tune	DE CER (%)
	DE (150h)	23.3
EN (1000h)	DE (150h)	21.4
EN + DE (300h)	DE (150h)	21.1
EN + ES + DE + gate (450h)		20.6
EN + ES + DE + gate (450h)	DE (150h)	19.4

- Fine-tuning DE from our universal model gets further gain (5.8%)
- Our universal model is better initial model than EN (1000hr), well-trained monolingual from a different language - (9.3%)

Conclusions

- Our Language-Universal End-to-End Speech Recognition model
 - Does not require lexicon information and easy to maintain in production
 - Shows 7.0% 11.1% WER reduction over monolingual character-based model
 - Shows 9.1% 12.4% WER reduction over conventional MTL approach
 - Can be used as a **good initial model** for the further adaptation
 - Improves performance over bootstrapping from a well-trained monolingual from a different language
 - Need to evaluate with explicit language model