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Motivation

• Data is not collected as a batch, but sequentially over time
– Speech or streaming text classification
– Satellite only transmits data daily Agency’s quarterly reports
• Often not possible/desirable to wait until complete before analyzing
• Additionally, some of the labels may be missing
• At any time point t, observed data as D(t) = {X(t),y(t)}
– X(t) is a matrix of n(t) samples and p feature variables
– l(t) < n(t) of the samples have label yi = [1,−1]

Experiments

Simulation

Isolet Speech Database
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• Training: ∼ 100 per time point (n(t) = [97, 103])
• Test: 1000 test points, Accuracy = (TP+TN)/1000

Supervised: Data from 200 categorical distributions

• 100 are sparse
(high prob. of 0s)
• 50 are relevant

(lower prob. of 0s)
• 50 are used to

distinguish
between 2 classes

Semi-supervised: Data from interior of a 3-D sphere

• One class is mostly
in center/interior
• Other class is on

the shell
• Only 10% of the

samples are labeled

• Follows the experimental framework used in [1]
• Training: (isolet1 - isolet4) broken into 24 time

points of 5 speakers, only first speaker is labeled
• Test: 1,559 samples from isolet5
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Decision Rule Corollary [4]

Assume β(t) are fixed parameters. Then the decision rule reduces to

ŷi′ = sgn(Xi′µ(τ) + b̂), which is a function of the previous mean and
optimal parameters α̂(τ) = argmax
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s.t. yT(τ)α(τ) = 0, α(τ)i ≥ 0 ∀i = 1, . . . , l(τ)

and the b̂ that statisfy the KKT conditions.
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Update Theorem [4]

At time τ , let the MED priors be θ ∼ N(µ(τ−1),
(
G(τ−1)

)−1
),

b ∼ N(0, σ2) and λ ∼ Exp.(ν) where σ, ν →∞, and γi ∼ P0(C(τ)).

Then the posterior also factorizes with P(θ|{D(t)}τt=1) as Gaussian:
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−1
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T
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and

precision matrix G(τ) = G(τ−1) + 2β(τ)X
T
(τ)L(τ)X(τ).

P(θ, b,γ, λ|{D(t)}τt=1) =
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exp
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
If prior is exp. family, the minimizing density is of same family [2, 3]

The above can be extended to non-linear decision boundaries with the
kernel trick [4].

Parameters:
• θ are weights for decision boundary
• b is a bias term for decision boundary

• γi are margin parameters
• λ is a regularizer

Soft Margin
Hinge Loss

Regularize
Smoothness w.r.t.
distribution of x

L(τ) is the normalized graph
Laplacian

• Form L(τ) using knn from
labeled and unlabeled X(τ)i

• Points with same label are
geometrically close
• Want decision boundary to

prefer “minCuts” (e−dist.)


