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e Data is not collected as a batch, but sequentially over time

— Speech or streaming text classification

— Satellite only transmits data daily = — Agency's quarterly reports
e Often not possible/desirable to wait until complete before analyzing
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e Form L, using knn from

labeled and unlabeled X,y
e Points with same label are The above can be extended to non-linear decision boundaries with the

geometrically close kernel trick [4].

® Wa nt deC|S|On bOU ndary to ACKNOWLEDGMENTS This work was funded partially by the Consortium for Verification Technology under Department of

B St prefer “minCUtS” (e—dist.) Energy National Nuclear Sec_urity Administration award number DE-NA0002534 and partially by the University of Michigan
ECE Departmental Fellowship.

and the b that statisfty the KKT conditions.

Sequential Maximum Margin Classifiers for Partially Labeled Data

Simulation

e Training: ~ 100 per time point (n() = (97, 103))

e Test: 1000 test points, Accuracy = (T'P+T1T'N)/1000

Supervised: Data from 200 categorical distributions
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Semi-supervised: Data from interior of a 3-D sphere

e One class is mostly -
in center/interior
e Other class is on >‘ ol —
the shell < 07 y ::":igusL\?l;\)/ISVM/LapMED
e Only 10% of the :
samples are labeled [ | . |
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Isolet Speech Database

e Follows the experimental framework used in [1]
e Training: (isoletl - isolet4) broken into 24 time

points of b speakers, only first speaker is labeled

o [est: 1,559 samples from isoletb
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