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Problem statement

Uncoordinated and Unsourced Multiple Access

> K active users out of Ki¢ total users K € [25 : 300], Kot is very large
» Each user has a B-bit message. B is small ~ 100

» N channel uses available N = 30,000
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Objective
Design a coding scheme minimizing the required SNR P such that

» Low complexity encoding and decoding complexities
> Prob. of decoding error per user P, < ¢ € [0.05,0.1]




Problem statement

Differences From Traditional Information Theoretic MAC

> K active users out of Kiq total users K € [25 : 300], Kot is very large
» Each user has a B-bit message. B is small ~ 100

» N channel uses available N ~ 30, 000
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» Uncoordinated: Resource allocation not allowed
» Unsourced: Decoding done upto permutation of messages

> Finite block length regime

3/17



Prior Work

[Polyanskiy’ 17] Gaussian coding for unsourced MAC
> Derived achievability limits via random Gaussian coding
e ML decoder: exponential complexity in B, K. O(N - (25)) ~ O(N28%)

» In comparison, ALOHA, TIN was shown to be very energy-inefficient
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> Derived achievability limits via random Gaussian coding
e ML decoder: exponential complexity in B, K. O(N - (25)) ~ O(N28%)

» In comparison, ALOHA, TIN was shown to be very energy-inefficient

[Ordentlich and Polyanksiy'17] Compute-and-Forward based coding scheme
» Decoding modulo-2 sums

» Low complexity but still large gap to Polyanksiy's bound
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Compressed Sensing View
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Compressed Sensing View
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Unsourced nature <> compressed sensing

> be {01}, ||bll = K
> J; € RN

Challenges
» Huge sensing matrix: impractical even for B ~ 100
» bis binary: optimal sensing matrix & decoder design are open problems
» Finding fundamental limits appears to be an open problem
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Compressive Sensing and MAC

Neighbor Discovery for Wireless Networks [Zhang, Guo'12]

» Each node wishes to identify the network interface addresses (NIAs) of those
nodes within a single hop

» Nodes assigned NIAs from address space {0,1,--- , N} (e.g. N =2% —1)
» Strong connection with support recovery problem in compressive sensing
» Deterministic signatures based on second order Reed-Muller codes

» Chirp decoding algorithm - complexity sub-linear in N

» We don't know the gap of this from information theoretic bounds




Neighbor Discovery for Wireless Networks

Coupled Compressive Sensing Scheme

| | B bit message
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Neighbor Discovery for Wireless Networks

Coupled Compressive Sensing Scheme

o i . . . n-1 . = Parity check bits

- \ | B bit message

0 1 . . \ . n—-1

| | . . . . | M bit codeword, M = J x n

J = # bits in each sub-block
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Neighbor Discovery for Wireless Networks

Coupled Compressive Sensing Scheme

o i . . . n-1 . = Parity check bits

| | | - - - \ | B bit message

0 1 . . \ . n—-1

| | . . . . | M bit codeword, M = J x n
J = 4 bits in each sub-block
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Neighbor Discovery for Wireless Networks

lterative Extension
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» Contribution of columns identified by tree decoder as transmitted vectors is
cancelled from the received signal.

» Subsequent iterations: Reduced sparsity sub-problems are solved followed by
tree decoding.
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> |; : #parity bits in sub-block i € [1: n — 1],

> L, : #erroneous paths that survive stage i € [1: n —1],
» Complexity C : # nodes on which parity check constraints need to be verified.

Expressions for E[L;] and C
> Lf|Li—1 ~ B((Li—l + l)K - 17pi)7pi - %aqi =1- Pi,

E[Li] = E[E[Li|Li—1]]
= E[((Li_1 + 1)K — 1)p;]
= piKE[Li—1] + pi(K — 1),

i

=Y |KTT(K-1) HPJ

m=1

> C=K+ Y72 [(Li + 1)K]
» [E[C] can be computed using the expression for E[L;] 10/17
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Performance Analysis

» LilLi—y ~ B((Li-y + 1)K —1,p)), pi = 57, 4i =1 — p;,
> G, ,(2) = Elz] = 2K T P(Lyoy = K)z¥

Probability of error for the tree decoder

n—2
GLn71 (Z) = an—_ll—i(Z)7
i=0
A 1<k<n-1
ZK, k =n,

Overall probability of error

> pcs : Probability of error of compressed sensor at sub-block level
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Performance Analysis

» LilLi—y ~ B((Li-y + 1)K —1,p)), pi = 57, 4i =1 — p;,
> G, ,(2) = Elz] = 2K T P(Lyoy = K)z¥

Probability of error for the tree decoder

n—2
GLn71 (Z) = fn}i_ll—i(z)7
i=0
A 1<k<n-1
f(2) - {"ﬁ*”k B DENER
ZK, k =n,

Overall probability of error

> pcs : Probability of error of compressed sensor at sub-block level
> Po=1—(1—P(L,—1 >1))(1 — ps)".




Performance Analysis

Optimization of Parity Lengths

minimize E[C]
(hyl2,. . ln—1)

subject to  P(Ly—1 > 1) < eyree,

n—1

Z/,-:M—B,

i=1

ie{0,1,...J}Vie[l:n—-1].
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Performance Analysis

Optimization of Parity Lengths

minimize E[C]
(hyl2,. . ln—1)

subject to 'D(Ln—l > 1) < Eiree, ‘E [Ln—l] < Etree,

n—1

Z/,-:M—B,

i=1

he{o1,. Jy¥ielin—1][0<f<JVie[l:n—1].|

» Geometric programming opt. problem

> Can be solved using any standard convex solver (ex. CVX).
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Performance Analysis

Choice of Parity Lengths

K =200,n=11,J =15

H Etree ‘ E[C] ‘ Parity Lengths H
0.006 Infeasible Infeasible
0.0061930 | 3.2357 x 10T | [0,0,0,0, 15, 15, 15, 15, 15, 15]
0.0061931 | 3357300 [0,3,8,8,8,8,10, 15, 15, 15]
0.0061932 | 1737000 [0,4,8,8,8,8,9,15,15, 15]
0.0061933 926990 [0,5,8,8,8,8,8,15, 15, 15]
0.0061935 467060 [1,8,8,8,8,8,8,11,15, 15|
0.0062 79634 [1,8,8,8,8,8,8,11,15, 15|
0.007 7357.8 [6,8,8,8,8,8,8,8,13, 15]
0.008 6152.7 [7.8,8,8,8,8,8,8,12, 15]
0.02 5022.9 [6,8,8,9,9,9,9,9,9, 14]
0.04 4158 [7,8,8,9,9,9,9,9,9,13]
0.6378 3066.3

[9,9,9,9,9,9,9,9,9,9]
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Performance Analysis

Parameters

Choice of Sensing Matrix

» Sensing matrix based on BCH code.
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Parameters

Choice of Sensing Matrix

» Sensing matrix based on BCH code.
» C° be a subset of codewords with |C°| = 27 from (2047,23) BCH codebook
satisfying:
e CeC® — T@pceC\C 1@ Cis the one's complement of &
o 51,82 GCO = G+ & ECO
e 0 €C° 0 denotes the all zero codeword.
> A=[a0,a1, - ,3_1), where 3, = VP25 —1),ceC®Viec[0:2 —1]

Decoding Algorithm
> Non-negative least squares
» Take top K + 10 elements
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Required E,/Np (dB)
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====: Random Coding[YP17]

== SIC T=2[AV17]

=B= SIC T=4[AV17]

== Proposed Scheme, 0 iterations

== Proposed Scheme, 1 iteration s

+222: [OP17] o
A Proposed Scheme, 2 iterations |*
® Proposed Scheme, 3 iterations

"""""""""'”""'""""f""""""f".-.‘-.-‘

|
50 100 150 200 250 300
Number of active users K

» B =75 N = 22517
» Only 4.3 dB away from Polyanksiy's achievability result
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Conclusion

Conclusion

» Proposed a divide and conquer approach to very large dimensional CS
problems

» Sub-linear time complexity
» Performance within ~ 4.3dB from the random coding ach. limit
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Conclusion

Conclusion

» Proposed a divide and conquer approach to very large dimensional CS
problems

» Sub-linear time complexity
» Performance within ~ 4.3dB from the random coding ach. limit

Open Problems
» A strict FBL lower bound for GMAC?
> Design of optimal sensing matrix for the K-sparse CS problem

> Solve a generic CS problem of huge dimensions using this framework: Bounds
for sample and computational complexities.
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Conclusion

Questions?

Thank you!
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