A Coupled Compressive Sensing Scheme for Unsourced Multiple Access

V.K. Amalladinne, A. Vem, D. Soma, K.R. Narayanan and J.-F. Chamberland

Department of Electrical and Computer Engineering Texas A&M University

Uncoordinated and Unsourced Multiple Access

- ▶ K active users out of K_{tot} total users $K \in [25:300]$, K_{tot} is very large
- lacktriangle Each user has a B-bit message. B is small pprox 100
- ▶ *N* channel uses available $N \approx 30,000$

Objective

Design a coding scheme minimizing the required SNR P such that

- ► Low complexity encoding and decoding complexities
- ▶ Prob. of decoding error per user $P_e \le \epsilon \in [0.05, 0.1]$

Differences From Traditional Information Theoretic MAC

- ▶ K active users out of K_{tot} total users $K \in [25:300]$, K_{tot} is very large
- lacktriangle Each user has a B-bit message. B is small pprox 100
- ▶ *N* channel uses available $N \approx 30,000$

- ► Uncoordinated: Resource allocation not allowed
- Unsourced: Decoding done upto permutation of messages
- ► Finite block length regime

Prior Work

[Polyanskiy' 17] Gaussian coding for unsourced MAC

- ► Derived achievability limits via random Gaussian coding
 - ML decoder: exponential complexity in B, K. $\mathcal{O}(N \cdot \binom{2^B}{K}) \approx \mathcal{O}(N2^{BK})$
- ▶ In comparison, ALOHA, TIN was shown to be very energy-inefficient

Prior Work

[Polyanskiy' 17] Gaussian coding for unsourced MAC

- ▶ Derived achievability limits via random Gaussian coding
 - ML decoder: exponential complexity in B, K. $\mathcal{O}(N \cdot {2 \choose K}) \approx \mathcal{O}(N2^{BK})$
- ▶ In comparison, ALOHA, TIN was shown to be very energy-inefficient

[Ordentlich and Polyanksiy'17] Compute-and-Forward based coding scheme

- ► Decoding modulo-2 sums
- ► Low complexity but still large gap to Polyanksiy's bound

Compressed Sensing View

$$\begin{bmatrix} y_1 \\ y_2 \\ \dots \\ y_N \end{bmatrix} = \begin{bmatrix} \begin{vmatrix} & & & & & \\ \vec{a}_1 & \vec{a}_2 & \cdots & \vec{a}_{2^B} \\ & & & & & \end{vmatrix} \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \\ \vdots \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} z_1 \\ z_2 \\ \vdots \\ z_N \end{bmatrix}$$

Unsourced nature \leftrightarrow compressed sensing

- ▶ $\vec{\mathbf{b}} \in \{0,1\}^{2^B}, ||\vec{\mathbf{b}}||_1 = K$
- $ightharpoonup \vec{\mathbf{a}}_i \in \mathbb{R}^N$

Compressed Sensing View

$$\begin{bmatrix} y_1 \\ y_2 \\ \dots \\ y_N \end{bmatrix} = \begin{bmatrix} \begin{vmatrix} & & & & & \\ \vec{a}_1 & \vec{a}_2 & \cdots & \vec{a}_{2^B} \\ & & & & & \end{vmatrix} \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \\ \vdots \\ 1 \\ 0 \\ \vdots \end{bmatrix} + \begin{bmatrix} z_1 \\ z_2 \\ \vdots \\ z_N \end{bmatrix}$$

Unsourced nature \leftrightarrow compressed sensing

- $\vec{b} \in \{0,1\}^{2^B}, ||\vec{b}||_1 = K$
- $ightharpoonup \vec{\mathbf{a}}_i \in \mathbb{R}^N$

Challenges

- ▶ Huge sensing matrix: impractical even for $B \approx 100$
- ightharpoonup is binary: optimal sensing matrix & decoder design are open problems
- ► Finding fundamental limits appears to be an open problem

Compressive Sensing and MAC

Neighbor Discovery for Wireless Networks [Zhang, Guo'12]

- ► Each node wishes to identify the network interface addresses (NIAs) of those nodes within a single hop
- lacktriangle Nodes assigned NIAs from address space $\{0,1,\cdots,N\}$ (e.g. $N=2^{48}-1)$
- ► Strong connection with support recovery problem in compressive sensing
- Deterministic signatures based on second order Reed-Muller codes
- ► Chirp decoding algorithm complexity sub-linear in N
- ▶ We don't know the gap of this from information theoretic bounds

B bit message

Iterative Extension

- Contribution of columns identified by tree decoder as transmitted vectors is cancelled from the received signal.
- ► Subsequent iterations: Reduced sparsity sub-problems are solved followed by tree decoding.

▶ I_i : #parity bits in sub-block $i \in [1:n-1]$,

- ▶ l_i : #parity bits in sub-block $i \in [1:n-1]$,
- ▶ L_i : #erroneous paths that survive stage $i \in [1:n-1]$,

- ▶ l_i : #parity bits in sub-block $i \in [1:n-1]$,
- $ightharpoonup L_i$: #erroneous paths that survive stage $i \in [1:n-1]$,
- ► Complexity *C* : # nodes on which parity check constraints need to be verified.

- ▶ I_i : #parity bits in sub-block $i \in [1:n-1]$,
- ▶ L_i : #erroneous paths that survive stage $i \in [1:n-1]$,
- ightharpoonup Complexity C:# nodes on which parity check constraints need to be verified.

Expressions for $\mathbb{E}[L_i]$ and C

▶ $L_i|L_{i-1} \sim B((L_{i-1}+1)K-1,p_i), p_i = \frac{1}{2^{l_i}}, q_i = 1-p_i,$

- ▶ I_i : #parity bits in sub-block $i \in [1:n-1]$,
- ▶ L_i : #erroneous paths that survive stage $i \in [1: n-1]$,
- ightharpoonup Complexity C:# nodes on which parity check constraints need to be verified.

Expressions for $\mathbb{E}[L_i]$ and C

▶
$$L_i|L_{i-1} \sim B((L_{i-1}+1)K-1, p_i), p_i = \frac{1}{2^{l_i}}, q_i = 1 - p_i$$

$$\mathbb{E}[L_{i}] = \mathbb{E}[\mathbb{E}[L_{i}|L_{i-1}]]$$

$$= \mathbb{E}[((L_{i-1}+1)K-1)p_{i}]$$

$$= p_{i}K\mathbb{E}[L_{i-1}] + p_{i}(K-1),$$

$$= \sum_{m=1}^{i} \left[K^{i-m}(K-1)\prod_{j=m}^{i} p_{j}\right]$$

- ▶ I_i : #parity bits in sub-block $i \in [1:n-1]$,
- ▶ L_i : #erroneous paths that survive stage $i \in [1: n-1]$,
- lacktriangle Complexity C:# nodes on which parity check constraints need to be verified.

Expressions for $\mathbb{E}[L_i]$ and C

▶
$$L_i|L_{i-1} \sim B((L_{i-1}+1)K-1,p_i), p_i = \frac{1}{2^{l_i}}, q_i = 1-p_i,$$

 $\mathbb{E}[L_i] = \mathbb{E}[\mathbb{E}[L_i|L_{i-1}]]$

$$= \mathbb{E}[((L_{i-1}+1)K-1)p_i] = p_i K \mathbb{E}[L_{i-1}] + p_i (K-1), = \sum_{m=1}^{i} \left[K^{i-m} (K-1) \prod_{j=m}^{i} p_j \right]$$

$$ightharpoonup C = K + \sum_{i=1}^{n-2} [(L_i + 1)K]$$

- ▶ l_i : #parity bits in sub-block $i \in [1:n-1]$,
- ▶ L_i : #erroneous paths that survive stage $i \in [1:n-1]$,
- lacktriangle Complexity C:# nodes on which parity check constraints need to be verified.

Expressions for $\mathbb{E}[L_i]$ and C

$$\blacktriangleright L_i|L_{i-1} \sim B((L_{i-1}+1)K-1,p_i), p_i = \frac{1}{2^{l_i}}, q_i = 1-p_i,$$

 $\mathbb{E}[L_i] = \mathbb{E}[\mathbb{E}[L_i|L_{i-1}]]$

$$= \mathbb{E}[((L_{i-1}+1)K-1)p_i] = p_i K \mathbb{E}[L_{i-1}] + p_i (K-1), = \sum_{m=1}^{i} \left[K^{i-m}(K-1) \prod_{j=m}^{i} p_j \right]$$

- $ightharpoonup C = K + \sum_{i=1}^{n-2} [(L_i + 1)K]$
- $ightharpoonup \mathbb{E}[C]$ can be computed using the expression for $\mathbb{E}[L_i]$

Performance Analysis

►
$$L_i|L_{i-1} \sim B((L_{i-1}+1)K-1, p_i), p_i = \frac{1}{2^{l_i}}, q_i = 1 - p_i$$

•
$$G_{L_{n-1}}(z) = \mathbb{E}[z^{L_{n-1}}] = \sum_{k=0}^{K^{n-1}-1} P(L_{n-1} = k)z^k$$

Probability of error for the tree decoder

$$P(L_{n-1} \ge 1) = 1 - G_{L_{n-1}}(0),$$
 where $G_{L_{n-1}}(z) = \prod_{i=0}^{n-2} f_{n-1-i}^{K-1}(z),$ $f_k(z) = egin{cases} q_k + p_k f_{k+1}^K(z), & 1 \le k \le n-1 \ z^{rac{1}{K}}, & k = n, \end{cases}$

Overall probability of error

 $ightharpoonup p_{cs}$: Probability of error of compressed sensor at sub-block level

Performance Analysis

$$\blacktriangleright L_i|L_{i-1} \sim B((L_{i-1}+1)K-1,p_i), p_i = \frac{1}{2^{l_i}}, q_i = 1-p_i,$$

•
$$G_{L_{n-1}}(z) = \mathbb{E}[z^{L_{n-1}}] = \sum_{k=0}^{K^{n-1}-1} P(L_{n-1} = k) z^k$$

Probability of error for the tree decoder

$$P(L_{n-1} \ge 1) = 1 - G_{L_{n-1}}(0),$$
 where $G_{L_{n-1}}(z) = \prod_{i=0}^{n-2} f_{n-1-i}^{K-1}(z),$ $f_k(z) = egin{cases} q_k + p_k f_{k+1}^K(z), & 1 \le k \le n-1 \ z^{rac{1}{K}}, & k = n, \end{cases}$

Overall probability of error

- \triangleright p_{cs} : Probability of error of compressed sensor at sub-block level
- $P_e = 1 (1 P(L_{n-1} \ge 1))(1 p_{cs})^n$

Optimization of Parity Lengths

```
 \begin{array}{ll} \underset{(I_1,I_2,\dots I_{n-1})}{\text{minimize}} & \mathbb{E}[C] \\ \text{subject to} & P(L_{n-1} \geq 1) \leq \varepsilon_{\mathsf{tree}}, \\ & \sum_{i=1}^{n-1} I_i = M - B, \\ & I_i \in \{0,1,\dots J\} \ \forall \ i \in [1:n-1]. \end{array}
```

Optimization of Parity Lengths

```
 \begin{split} & \underset{(I_1,I_2,\dots I_{n-1})}{\text{minimize}} & & \mathbb{E}[C] \\ & \text{subject to} & & P(L_{n-1} \geq 1) \leq \varepsilon_{\mathsf{tree}}, \\ & & \sum_{i=1}^{n-1} I_i = M - B, \\ & & I_i \in \{0,1,\dots J\} \; \forall \; i \in [1:n-1]. \\ \end{split}
```

Optimization of Parity Lengths

$$\begin{split} & \underset{(I_1,I_2,\dots I_{n-1})}{\text{minimize}} & & \mathbb{E}[C] \\ & \text{subject to} & & P(L_{n-1} \geq 1) \leq \varepsilon_{\mathsf{tree}}, \\ & & \sum_{i=1}^{n-1} I_i = M - B, \\ & & I_i \in \{0,1,\dots J\} \ \forall \ i \in [1:n-1]. \\ & 0 \leq I_i \leq J \ \forall \ i \in [1:n-1]. \end{split}$$

Geometric programming opt. problem

Optimization of Parity Lengths

```
 \begin{split} & \underset{(h_i, l_2, \dots l_{n-1})}{\text{minimize}} & & \mathbb{E}[\mathcal{C}] \\ & \text{subject to} & & P(L_{n-1} \geq 1) \leq \varepsilon_{\mathsf{tree}}, \\ & & \sum_{i=1}^{n-1} l_i = M - B, \\ & & l_i \in \{0, 1, \dots J\} \; \forall \; i \in [1:n-1]. \\ & 0 \leq l_i \leq J \; \forall \; i \in [1:n-1]. \end{split}
```

- ► Geometric programming opt. problem
- ► Can be solved using any standard convex solver (ex. CVX).

Choice of Parity Lengths

$$K = 200, n = 11, J = 15$$

$arepsilon_{tree}$	$\mathbb{E}[C]$	Parity Lengths
0.006	Infeasible	Infeasible
0.0061930	3.2357×10^{11}	[0,0,0,0,15,15,15,15,15,15]
0.0061931	3357300	[0, 3, 8, 8, 8, 8, 10, 15, 15, 15]
0.0061932	1737000	[0, 4, 8, 8, 8, 8, 9, 15, 15, 15]
0.0061933	926990	[0, 5, 8, 8, 8, 8, 8, 15, 15, 15]
0.0061935	467060	[1, 8, 8, 8, 8, 8, 8, 11, 15, 15]
0.0062	79634	[1, 8, 8, 8, 8, 8, 8, 11, 15, 15]
0.007	7357.8	[6, 8, 8, 8, 8, 8, 8, 8, 13, 15]
0.008	6152.7	[7,8,8,8,8,8,8,12,15]
0.02	5022.9	[6, 8, 8, 9, 9, 9, 9, 9, 14]
0.04	4158	[7, 8, 8, 9, 9, 9, 9, 9, 13]
0.6378	3066.3	[9, 9, 9, 9, 9, 9, 9, 9, 9]

Choice of Sensing Matrix

► Sensing matrix based on BCH code.

- ► Sensing matrix based on BCH code.
- ▶ C^0 be a subset of codewords with $|C^0| = 2^J$ from (2047,23) BCH codebook satisfying:

- Sensing matrix based on BCH code.
- ▶ C^0 be a subset of codewords with $|C^0| = 2^J$ from (2047,23) BCH codebook satisfying:
 - $\vec{c} \in \mathcal{C}^0 \implies \vec{1} \oplus \vec{c} \in \mathcal{C} \setminus \mathcal{C}^0$, $\vec{1} \oplus \vec{c}$ is the one's complement of \vec{c}

- Sensing matrix based on BCH code.
- ▶ C^0 be a subset of codewords with $|C^0| = 2^J$ from (2047,23) BCH codebook satisfying:
 - $\vec{c} \in \mathcal{C}^0 \implies \vec{1} \oplus \vec{c} \in \mathcal{C} \setminus \mathcal{C}^0$, $\vec{1} \oplus \vec{c}$ is the one's complement of \vec{c}
 - $\bullet \ \, \vec{c}_1,\vec{c}_2\in\mathcal{C}^0 \implies \vec{c}_1+\vec{c}_2\in\mathcal{C}^0$

- Sensing matrix based on BCH code.
- ▶ C^0 be a subset of codewords with $|C^0| = 2^J$ from (2047,23) BCH codebook satisfying:
 - $\vec{c} \in \mathcal{C}^0 \implies \vec{1} \oplus \vec{c} \in \mathcal{C} \setminus \mathcal{C}^0$, $\vec{1} \oplus \vec{c}$ is the one's complement of \vec{c}
 - $\bullet \ \vec{c}_1, \vec{c}_2 \in \mathcal{C}^0 \implies \vec{c}_1 + \vec{c}_2 \in \mathcal{C}^0$
 - $\vec{0} \in C^0$, $\vec{0}$ denotes the all zero codeword.

- Sensing matrix based on BCH code.
- ▶ C^0 be a subset of codewords with $|C^0| = 2^J$ from (2047,23) BCH codebook satisfying:
 - $\vec{c} \in \mathcal{C}^0 \implies \vec{1} \oplus \vec{c} \in \mathcal{C} \setminus \mathcal{C}^0$, $\vec{1} \oplus \vec{c}$ is the one's complement of \vec{c}
 - $\vec{c_1}, \vec{c_2} \in \mathcal{C}^0 \implies \vec{c_1} + \vec{c_2} \in \mathcal{C}^0$
 - $\vec{0} \in C^0$, $\vec{0}$ denotes the all zero codeword
- ▶ $A = [\vec{a_0}, \vec{a_1}, \cdots, \vec{a_{2^J-1}}]$, where $\vec{a_i} = \sqrt{P(2\vec{c_i} 1)}, \vec{c_i} \in C^0 \ \forall \ i \in [0:2^J 1]$.

Choice of Sensing Matrix

- Sensing matrix based on BCH code.
- ▶ C^0 be a subset of codewords with $|C^0| = 2^J$ from (2047,23) BCH codebook satisfying:
 - $\vec{c} \in \mathcal{C}^0 \implies \vec{1} \oplus \vec{c} \in \mathcal{C} \setminus \mathcal{C}^0$, $\vec{1} \oplus \vec{c}$ is the one's complement of \vec{c}
 - $\vec{c}_1, \vec{c}_2 \in \mathcal{C}^0 \implies \vec{c}_1 + \vec{c}_2 \in \mathcal{C}^0$
 - $\vec{0} \in C^0$, $\vec{0}$ denotes the all zero codeword
- ▶ $A = [\vec{a}_0, \vec{a}_1, \cdots, \vec{a}_{2^J-1}]$, where $\vec{a}_i = \sqrt{P}(2\vec{c}_i 1), \vec{c}_i \in \mathcal{C}^0 \ \forall \ i \in [0:2^J 1]$.

Decoding Algorithm

- ► Non-negative least squares
- ▶ Take top K + 10 elements

- ► B = 75, N = 22517
- ► Only 4.3 dB away from Polyanksiy's achievability result

Conclusion

- ► Proposed a divide and conquer approach to very large dimensional CS problems
- ► Sub-linear time complexity
- \blacktriangleright Performance within \approx 4.3dB from the random coding ach. limit

Conclusion

- ► Proposed a divide and conquer approach to very large dimensional CS problems
- Sub-linear time complexity
- \blacktriangleright Performance within \approx 4.3dB from the random coding ach. limit

Open Problems

- ► A strict FBL lower bound for GMAC?
- ▶ Design of optimal sensing matrix for the K-sparse CS problem
- ► Solve a generic CS problem of huge dimensions using this framework: Bounds for sample and computational complexities.

Questions?

Thank you!