

SP-L8.2

Soft-Target Training with Ambiguous Emotional Utterances for DNN-based Speech Emotion Classification

NTT Media Intelligence Laboratories, NTT Corporation

<u>Atsushi Ando</u>, Satoshi Kobashikawa, Hosana Kamiyama, Ryo Masumura, Yusuke Ijima, Yushi Aono

ICASSP 2018

Copyright©2018 NTT corp. All Rights Reserved.

Summary

<u>Purpose</u>

- ✓ Speech emotion classification from acoustic features
 - Task: 4-class classification (*Neutral, Happy, Sad, Angry*)

Novelty

- To mitigate training data limitation problem, utilizing *ambiguous* emotional utterances (no target emotions are dominant) which are ignored in the conventional methods
 - Employ two types of soft-target training

<u>Results</u>

- ✓ Performance improved
 - Overall Accuracy: 58.6% \rightarrow 62.6%, Average Recall: 53.7% \rightarrow 63.7%

Speech emotion recognition is important technology to understand natural speech

✓ Application : "sympathetic" spoken dialog system

✓ Task description

- Input : short utterance (1~10 sec.)
- Target : 4-class speech emotion (*Neutral, Happy, Sad, Angry*)

Conventional

Frame-wise acoustic features + BLSTM-RNNs

- ✓ Emotion classification by BLSTM w/ attention [Mirsamadi+, 17]
 - Utilizing local characteristics of emotions

Problem

Training data is usually limited

✓ Emotion classification by BLSTM w/ attention [Mirsamadi+, 17]

of parameters: 100k~

of train data: ~5k

Neutral Happy Sad Angry

 \rightarrow Classifier is overfitted / less generalized

Issue How to train complex classifier from limited data ?

Problem - Why limited?

Ground truths are decided by several annotators. Some utterances are ignored for training

Ground truth = **Dominant emotion** of annotations

Innovative B&D by NT

Problem - Why limited?

Ground truths are decided by several annotators. Some utterances are ignored for training

Ground truth = **Dominant emotion** of annotations

Innovative B&D by N

Utilize *ambiguous* emotional utterances (target emo. are minor) to mitigate training data limitation

Utilize ambiguous emotional utterances (target emo. are minor) to mitigate training data limitation

Utilize ambiguous emotional utterances (target emo. are minor) to mitigate training data limitation

Utilize ambiguous emotional utterances (target emo. are minor) to mitigate training data limitation

Control discriminativity to handle both *clear* and *ambiguous* emotional utterances

Proposed

Soft-target training is employed to deal *clear/ambiguous* emotional utterances

- ✓ Two types of soft-target
 - 1. Soft-target [Fayek+, 16]

 $\underline{q(c_k)} = \frac{\sum_n h_k^{(n)}}{\sum_k \sum_n h_k^{(n)}}$

2. Modified soft-target $\frac{q(c_k)}{\alpha K + \sum_k \sum_n h_k^{(n)}}$

Annotation frequency (sum=1)

- $h_k^{(n)}$: Binary label-existence (0/1) *n*-th annotator, *k*-th emotion class
- K : Total emotion classes

Additive smoothed form of conventional soft-target

- lpha : Smoothing coefficient
- Model parameters are updated by cross-entropy loss

Modified soft-target is suitable to represent ambiguous emotional utterances

✓ Examples of teachers $q(c_k)$

	Hard-target	Soft-target [Fayek+,16]	Modified Soft-target		
[Нарру, Нарру, Нарру]	1.0 0 0 0 Neu Hap Sad Ang	1.0 0 0 0 Neu Hap Sad Ang	0.58 0.14 0.14 0.14 Neu Hap Sad Ang		
[Happy, Happy, Neutral]	1.0 0 0 0 Neu Hap Sad Ang	0.66 0.33 0 0 Neu Hap Sad Ang	0.29 0.43 0.14 0.14 Neu Hap Sad Ang		
[Happy, Others, Others]	(no use)	1.0 0 0 0 Neu Hap Sad Ang	0.2 0.4 0.2 0.2 Neu Hap Sad Ang		
Non-target			(Smoothing coeff. $\alpha = 1$)		

Copyright©2018 NTT corp. All Rights Reserved. 13

Modified soft-target is suitable to represent *ambiguous* emotional utterances

✓ Examples of teachers $q(c_k)$

	Hard-target	Soft-target [Fayek+,16]	Modified Soft-target
[Нарру, Нарру, Нарру]	1.0 0 0 0 Neu Hap Sad Ang	1.0 0 0 0 Neu Hap Sad Ang	0.58 0.14 0.14 0.14 Neu Hap Sad Ang
[Happy, Happy, Neutral]	1.0 0 0 0 Neu Hap Sad Ang	0.66 0.33 0 0 Neu Hap Sad Ang	0.29 0.43 0.14 0.14 Neu Hap Sad Ang
[Happy, Others, Others]	(no use)	1.0 0 0 0 Neu Hap Sad Ang	0.2 0.4 0.2 0.2 Neu Hap Sad Ang
Non-target	Ambiguous uttera are discarded	nces Copyrigh	(Smoothing coeff. $\alpha = 1$) It©2018 NTT corp. All Rights Reserved. 14

Modified soft-target is suitable to represent *ambiguous* emotional utterances

✓ Examples of teachers $q(c_k)$

Modified soft-target is suitable to represent *ambiguous* emotional utterances

✓ Examples of teachers $q(c_k)$

	Hard-target	Soft-target [Fayek+,16]	Modified Soft-target
[Нарру, Нарру, Нарру]	1.0 0 0 0 Neu Hap Sad Ang	1.0 0 0 0 Neu Hap Sad Ang	0.58 0.14 0.14 0.14 Neu Hap Sad Ang
[Happy, Happy, Neutral]	1.0 0 0 0 Neu Hap Sad Ang	0.66 0.33 0 0 Neu Hap Sad Ang	0.29 0.43 0.14 0.14 Neu Hap Sad Ang
[Happy, Others, Others]	(no use)	1.0 0 0 0 Neu Hap Sad Ang	0.2 0.2 0.2 Neu Hap Sad Ang
Non-target		Copyrigh	Lower discriminativity in ambiguous emo. utt

Objective function of the model

Experiments

- 1. Evaluate effectiveness of *ambiguous* emotional utterances for train
- 2. Compare teacher labels (hard / soft / modified soft)
- ✓ **Dataset:** IEMOCAP [Busso+, 08]
 - **Task:** 2-speaker dialogue (1 male, 1 female)
 - # of speakers: 10 (train: 8, test: 2)
 - # of annotators: 3

frustrated, excited, surprised, fear, disgust, no-dominant

			# of utterances (dominant emotion)				
		Total	Neutral	Нарру	Sad	Angry	Others
Train	clear	3548	1324	460	890	874	-
	ambiguous	3693	0	0	0	0	3693
Test		942	384	135	194	229	-

Setups

- ✓ **Classifier:** BLSTM + attention [Mirsamadi+,17]
 - Structure
 - ➢ Full256-BLSTM128-attention-Full256
 - Input: frame-wise acoustic features, 47 dims.
 - MFCC12, ΔMFCC12, ΔΔMFCC12, Loudness, ΔLoudness, ΔΔLoudness, F0, VoiceProb, ZCR, HNR, ΔF0, ΔVoiceProb, ΔZCR, ΔHNR
 - Teacher: ① Hard-target
 - 2 Soft-target [Fayek+, 16]
 - ③ Modified soft-target
 - Train data: clear / ambiguous / clear + ambiguous

✓ Evaluation measures

- Weighted Accuracy (WA): overall accuracy
- Unweighted Accuracy (UA): average recall of emotion classes
 - > Average results of 5 trials of training

baseline

Moderate performance with *ambiguous* data alone, and best with *clear* + *ambiguous* data

		Train set		Accuracy [%]	
	Teacher	clear	ambig.	WA	UA
MajorityClass (All Neutral)				40.8	25.0
Baseline	Hard-target	\checkmark		58.6	53.7
	Soft-target	\checkmark		58.1	54.9
Proposed	Modified	\checkmark		58.5	57.4
soft-t	soft-target		\checkmark	53.6	54.0
		\checkmark	\checkmark	62.6	63.7
			Ov	erall Acc.	Avg. Recall

Moderate performance with *ambiguous* data alone, and best with *clear* + *ambiguous* data

		Trai	n set	Accuracy [%]		
	Teacher	clear	ambig.	WA	UA	
MajorityClass (All Neutral)				40.8	25.0	
Baseline	Hard-target	\checkmark		58.6	53.7	
	Soft-target	\checkmark		58.1	54.9	
Proposed	Modified	\checkmark		58.5	57.4	
soft-target		\checkmark	53.6	54.0		
		\checkmark	\checkmark	62.6	63.7	
	eve	Moderate performance even they have been ignored for training!				

Moderate performance with *ambiguous* data alone, and best with *clear* + *ambiguous* data

		Train set		Accuracy [%]	
	Teacher	clear	ambig.	WA	UA
MajorityClass (All Neutral)				40.8	25.0
Baseline	Hard-target	\checkmark		58.6	53.7
	Soft-target	\checkmark		58.1	54.9
Proposed	Modified	\checkmark		58.5	57.4
soft-target		\checkmark	53.6	54.0	
		\checkmark	\checkmark	62.6	63.7
		Be	st perfo	rmance	

Comparisons of teacher labels

Modified soft-target with smoothing coeff. = 0.75 is better than (conventional) soft-target

Conclusions

✓ Summary

- **Purpose:** emotion classification from acoustic features
- Approach: Utilizing *ambiguous* emotional utterances to mitigate training data limitation problem
- Method: Soft-target training which deals both *clear* and *ambiguous* emotional utterances in same criteria

> Equal to ML/MAP estimation of true emotion distributions

Results: Performances were improved (WA 58.6→62.6%)
Show the effectiveness of *ambiguous* data for training

✓ Future works

- Evaluations by other corpus / emotion set
- Improve modified soft-target (prior distribution of MAP estimation)

