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Spoken Language Understanding Pipeline

Figure: icons: [1]

ASR errors get propagated to NLU component

leverage information from intent detection and slot filling to correct
ASR errors

train as joint model
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High Level Architecture
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Encoder

bidirectional RNN with LSTM cell

ht = [fht , bht ] at each timestep t = {1, ...,Tx}
encodes input sequence x to vector s0 [2]:

s0 = tanh(Ws [fhTx , bh1])
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Intent Decoder

text classification on encoded input sequence x

intent attention vector c i weighted sum over all ht

intent label y i predicted by feed-forward network on [c i , s0]
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Intent Decoder Detail
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Corrected-Word Decoder

RNN with LSTM cell

initial state is set to s0
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Corrected-Word Decoder

Input at each decoding timestep i :

predicted intent label y i

attention vector cwi weighted sum over all ht

previous emitted corrected word ywi−1
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Corrected-Word Decoder Detail
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Slot Decoder

slots are tagged on the corrected word sequence

apply same encoder, resulting in hidden states h′ and s ′0
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Slot Decoder

Input at each decoding timestep i :

predicted intent label y i

attention vector csi weighted sum over all h′t

previous emitted slot token y si−1
corrected word encoder hidden state h′i
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Slot Decoder Detail
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Joint Model

use information about predicted intent during word correction

shared word embeddings for all tasks

weights shared between both encoders

scheduled sampling [3] for corrected ASR sequence
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ATIS

Airline Travel Information Systems (ATIS) dataset [4]

18 different intent labels

128 different slot labels
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ATIS Instance

Input:

words show me flights from boston to new york

Labels:

intent flight

slots O O O O
B-fromloc
.city name

O
B-toloc
.city name

I-toloc
.city name
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Extended ATIS

create audio samples by TTS

add noise to reach ASR performance of ∼ 14% word error rate

use top3 ASR hypotheses as input and form new instances
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Extended ATIS Instance

Input:

words show flights from boston to no work

Labels:

intent flight

words show me flights from boston to new york

slots O O O O
B-fromloc
.city name

O
B-toloc
.city name

I-toloc
.city name
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Data

train dev test unique words

ATIS 4085 893 893 950

extended 11841 2583 2606 3178
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Baseline

subsequent models:

Figure: ASR Correction

Figure: Intent Detection + Slot Filling [5]
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Evaluation Metrics

WER: word error rate

Slot F1: F1-score following CoNLL Chunking Shared Task [6] using
the in/out/begin schema [7]

Intent Error: percentage of wrongly predicted intent labels
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Results

Models WER (%) Slot (F1) Intent Error (%)

Joint Slot&Detection 14.55 84.26 5.80
ASR Correction +
Joint Slot&Detection 10.43 86.85 5.20
Proposed Joint Model 10.55 87.13 5.04

Table: Experimental results on the extended ATIS dataset.

average of 10 runs

joint model beats subsequent model
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Conclusion

Figure: icons: [1]

joint model for ASR error correction, intent detection and slot tagging
performs better than subsequent models

reducing the gap between ASR and NLU component
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Future Work

use differential approach:

Gumbel Softmax [8]
Soft Argmax [9]

Raphael Schumann, Pongtep Angkititrakul (Bosch LLC)Incorporating ASR Errors with Attention-based, Jointly Trained RNN for Intent Detection and Slot FillingICASSP 2018 32 / 36



Bibliography I

[1] M. Aguilar, A. Shirazi, and S. Keating, Voice, voice, write,

[2] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” CoRR, vol. abs/1409.0473,
2014. arXiv: 1409.0473. [Online]. Available:
http://arxiv.org/abs/1409.0473.

[3] S. Bengio, O. Vinyals, N. Jaitly, and N. M. Shazeer, “Scheduled
sampling for sequence prediction with recurrent neural networks,” in
Advances in Neural Information Processing Systems, NIPS, 2015.
[Online]. Available: http://arxiv.org/abs/1506.03099.

Raphael Schumann, Pongtep Angkititrakul (Bosch LLC)Incorporating ASR Errors with Attention-based, Jointly Trained RNN for Intent Detection and Slot FillingICASSP 2018 33 / 36

http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1506.03099


Bibliography II

[4] C. T. Hemphill, J. J. Godfrey, and G. R. Doddington, “The atis
spoken language systems pilot corpus,” in Proceedings of the
Workshop on Speech and Natural Language, ser. HLT ’90, Hidden
Valley, Pennsylvania: Association for Computational Linguistics, 1990,
pp. 96–101. doi: 10.3115/116580.116613. [Online]. Available:
https://doi.org/10.3115/116580.116613.

[5] B. Liu and I. Lane, “Attention-based recurrent neural network models
for joint intent detection and slot filling,” CoRR,
vol. abs/1609.01454, 2016. [Online]. Available:
http://arxiv.org/abs/1609.01454.

Raphael Schumann, Pongtep Angkititrakul (Bosch LLC)Incorporating ASR Errors with Attention-based, Jointly Trained RNN for Intent Detection and Slot FillingICASSP 2018 34 / 36

https://doi.org/10.3115/116580.116613
https://doi.org/10.3115/116580.116613
http://arxiv.org/abs/1609.01454


Bibliography III

[6] E. F. Tjong Kim Sang and S. Buchholz, “Introduction to the
conll-2000 shared task: Chunking,” in Proceedings of the 2Nd
Workshop on Learning Language in Logic and the 4th Conference on
Computational Natural Language Learning - Volume 7, ser. ConLL
’00, Lisbon, Portugal: Association for Computational Linguistics,
2000, pp. 127–132. doi: 10.3115/1117601.1117631. [Online].
Available: https://doi.org/10.3115/1117601.1117631.

[7] L. A. Ramshaw and M. P. Marcus, “Text chunking using
transformation-based learning,” CoRR, vol. cmp-lg/9505040, 1995.
[Online]. Available: http://arxiv.org/abs/cmp-lg/9505040.

[8] E. Jang, S. Gu, and B. Poole, Categorical reparameterization with
gumbel-softmax, cite arxiv:1611.01144, 2016. [Online]. Available:
http://arxiv.org/abs/1611.01144.

Raphael Schumann, Pongtep Angkititrakul (Bosch LLC)Incorporating ASR Errors with Attention-based, Jointly Trained RNN for Intent Detection and Slot FillingICASSP 2018 35 / 36

https://doi.org/10.3115/1117601.1117631
https://doi.org/10.3115/1117601.1117631
http://arxiv.org/abs/cmp-lg/9505040
http://arxiv.org/abs/1611.01144


Bibliography IV

[9] K. Goyal, C. Dyer, and T. Berg-Kirkpatrick, “Differentiable scheduled
sampling for credit assignment,” CoRR, vol. abs/1704.06970, 2017.
arXiv: 1704.06970. [Online]. Available:
http://arxiv.org/abs/1704.06970.

Raphael Schumann, Pongtep Angkititrakul (Bosch LLC)Incorporating ASR Errors with Attention-based, Jointly Trained RNN for Intent Detection and Slot FillingICASSP 2018 36 / 36

http://arxiv.org/abs/1704.06970
http://arxiv.org/abs/1704.06970

	Introduction
	Proposed Model
	Data
	Baseline
	Evaluation Metrics
	Results
	Conclusion
	Future Work
	Appendix

