Incorporating ASR Errors with Attention-based, Jointly Trained RNN for Intent Detection and Slot Filling

Raphael Schumann¹ Pongtep Angkititrakul²

Institute for Computational Linguistics Heidelberg University

Raphael Schumann, Pongtep Angkititrakul (Elncorporating ASR Errors with Attention-base

ICASSP 2018 1 / 36

1 Introduction

2 Proposed Model

3 Data

5 Evaluation Metrics

6 Results

1 Introduction

2 Proposed Model

3 Data

4 Baseline

5 Evaluation Metrics

6 Results

Conclusion

8 Future Work

ъ

Spoken Language Understanding Pipeline

Figure: icons: [1]

- ASR errors get propagated to NLU component
- leverage information from intent detection and slot filling to correct ASR errors
- train as joint model

Introduction

Proposed Model

3 Data

4 Baseline

5 Evaluation Metrics

6 Results

Conclusion

8 Future Work

ъ.

High Level Architecture

ICASSP 2018 6 / 36

- bidirectional RNN with LSTM cell
- $h_t = [fh_t, bh_t]$ at each timestep $t = \{1, ..., T_x\}$
- encodes input sequence \mathbf{x} to vector s_0 [2]:
 - $s_0 = tanh(W_s[fh_{T_x}, bh_1])$

Intent Decoder

- text classification on encoded input sequence x
- intent attention vector c^i weighted sum over all h_t
- intent label y^i predicted by feed-forward network on $[c^i, s_0]$

Intent Decoder Detail

Corrected-Word Decoder

- RNN with LSTM cell
- initial state is set to s₀

Corrected-Word Decoder

Input at each decoding timestep *i*:

- predicted intent label y^i
- attention vector c_i^w weighted sum over all h_t
- previous emitted corrected word y_{i-1}^w

Corrected-Word Decoder Detail

- slots are tagged on the corrected word sequence
- apply same encoder, resulting in hidden states h' and s'_0

Slot Decoder

- predicted intent label yⁱ
- attention vector c_i^s weighted sum over all h'_t
- previous emitted slot token y_{i-1}^s
- corrected word encoder hidden state h'_i

Slot Decoder Detail

ICASSP 2018 15 / 36

Joint Model

- use information about predicted intent during word correction
- shared word embeddings for all tasks
- weights shared between both encoders
- scheduled sampling [3] for corrected ASR sequence

Introduction

2 Proposed Model

3 Data

4 Baseline

5 Evaluation Metrics

6 Results

Conclusion

8 Future Work

- Airline Travel Information Systems (ATIS) dataset [4]
- 18 different intent labels
- 128 different slot labels

Input:

words	show	me	flights	from	boston	to	new	york
-------	------	----	---------	------	--------	----	-----	------

Labels:

intent	flight							
clote	0	0	0	0	B-fromloc	0	B-toloc	l-toloc
SIGES	000	0	.city_name	0	.city_name	.city_name		

三日 のへの

<⊡> < ≣>

- create audio samples by TTS
- \bullet add noise to reach ASR performance of \sim 14% word error rate
- use top3 ASR hypotheses as input and form new instances

Input:

words	show	flights	from	boston	to	no	work

Labels:

intent		flight								
words	show	me	flights	from	boston	to	new	york		
slots	0	0	0	0	B-fromloc .city_name	0	B-toloc .city_name	l-toloc .city_name		

1= 9QC

	train	dev	test	unique words
ATIS	4085	893	893	950
extended	11841	2583	2606	3178

Introduction

2 Proposed Model

Data

5 Evaluation Metrics

6 Results

Conclusion

8 Future Work

Baseline

subsequent models:

Figure: Intent Detection + Slot Filling [5]

Introduction

2 Proposed Model

3 Data

4 Baseline

5 Evaluation Metrics

6 Results

Conclusion

8 Future Work

- WER: word error rate
- Slot F1: F1-score following CoNLL Chunking Shared Task [6] using the in/out/begin schema [7]
- Intent Error: percentage of wrongly predicted intent labels

Introduction

2 Proposed Model

3 Data

4 Baseline

5 Evaluation Metrics

6 Results

B Future Work

Models	WER (%)	Slot (F1)	Intent Error (%)
Joint Slot&Detection	14.55	84.26	5.80
ASR Correction +			
Joint Slot&Detection	10.43	86.85	5.20
Proposed Joint Model	10.55	87.13	5.04

Table: Experimental results on the extended ATIS dataset.

- average of 10 runs
- joint model beats subsequent model

Introduction

2 Proposed Model

3 Data

- 4 Baseline
- 5 Evaluation Metrics

6 Results

B Future Work

Figure: icons: [1]

- joint model for ASR error correction, intent detection and slot tagging performs better than subsequent models
- reducing the gap between ASR and NLU component

Introduction

2 Proposed Model

3 Data

4 Baseline

5 Evaluation Metrics

6 Results

Conclusion

- use differential approach:
 - Gumbel Softmax [8]
 - Soft Argmax [9]

ъ

- [1] M. Aguilar, A. Shirazi, and S. Keating, Voice, voice, write,
- [2] D. Bahdanau, K. Cho, and Y. Bengio, "Neural machine translation by jointly learning to align and translate," *CoRR*, vol. abs/1409.0473, 2014. arXiv: 1409.0473. [Online]. Available: http://arxiv.org/abs/1409.0473.
- S. Bengio, O. Vinyals, N. Jaitly, and N. M. Shazeer, "Scheduled sampling for sequence prediction with recurrent neural networks," in Advances in Neural Information Processing Systems, NIPS, 2015.
 [Online]. Available: http://arxiv.org/abs/1506.03099.

ELE SQC

- C. T. Hemphill, J. J. Godfrey, and G. R. Doddington, "The atis spoken language systems pilot corpus," in *Proceedings of the Workshop on Speech and Natural Language*, ser. HLT '90, Hidden Valley, Pennsylvania: Association for Computational Linguistics, 1990, pp. 96–101. DOI: 10.3115/116580.116613. [Online]. Available: https://doi.org/10.3115/116580.116613.
- B. Liu and I. Lane, "Attention-based recurrent neural network models for joint intent detection and slot filling," CoRR, vol. abs/1609.01454, 2016. [Online]. Available: http://arxiv.org/abs/1609.01454.

Bibliography III

- [6] E. F. Tjong Kim Sang and S. Buchholz, "Introduction to the conll-2000 shared task: Chunking," in *Proceedings of the 2Nd Workshop on Learning Language in Logic and the 4th Conference on Computational Natural Language Learning Volume 7*, ser. ConLL '00, Lisbon, Portugal: Association for Computational Linguistics, 2000, pp. 127–132. DOI: 10.3115/1117601.1117631. [Online]. Available: https://doi.org/10.3115/1117601.1117631.
- [7] L. A. Ramshaw and M. P. Marcus, "Text chunking using transformation-based learning," *CoRR*, vol. cmp-lg/9505040, 1995.
 [Online]. Available: http://arxiv.org/abs/cmp-lg/9505040.
- [8] E. Jang, S. Gu, and B. Poole, Categorical reparameterization with gumbel-softmax, cite arxiv:1611.01144, 2016. [Online]. Available: http://arxiv.org/abs/1611.01144.

ELE NOR

 K. Goyal, C. Dyer, and T. Berg-Kirkpatrick, "Differentiable scheduled sampling for credit assignment," *CoRR*, vol. abs/1704.06970, 2017. arXiv: 1704.06970. [Online]. Available: http://arxiv.org/abs/1704.06970.