Structured Analysis Dictionary Learning for Image Classification

Wen Tang, Ashkan Panahi, Hamid Krim, Liyi Dai*

North Carolina State University, USA *Army Research Office, USA

International Conference on Acoustics, Speech and Signal Processing April 17, 2018

Overview

- Introduction
- Structured Analysis Dictionary Learning
 - Conventional ADL
 - Mitigating Inter-Class Feature Interference
 - Structural Mapping of Sparse Representation
 - * Minimal Classification Error
- Experiments and Results
- Conclusion

NC STATE UNIVERSITY

Task

Task-driven DL

Synthesis Dictionary Learning $\min_{\Omega, U} \frac{1}{2} \|X - \Omega U\|_{2}^{2} + \lambda \|U\|_{1}$

1. Learn class-specific dictionaries

$$\min_{\Omega_i, A_i} \frac{1}{2} \|X_i - \Omega_i U_i\|_2^2 + \lambda \|U_i\|_1, \qquad \forall i = 1, \dots, C$$

2. Jointly learn a universal dictionary and a multiclass classifier

$$\min_{\Omega,A,W} \frac{1}{2} \|X - \Omega U\|_2^2 + \lambda_1 \|U\|_1 + \lambda_2 \|L - WU\|_2^2$$

Task-driven Analysis DL

Analysis Dictionary Learning $\min_{\Omega U} \frac{1}{2} \|U - \Omega X\|_2^2 + \lambda \|U\|_1$

Analysis K-SVD, Sparse Null Space (SNS) pursuit

1. [Shekhar et al., 2014]: ADL + SVM

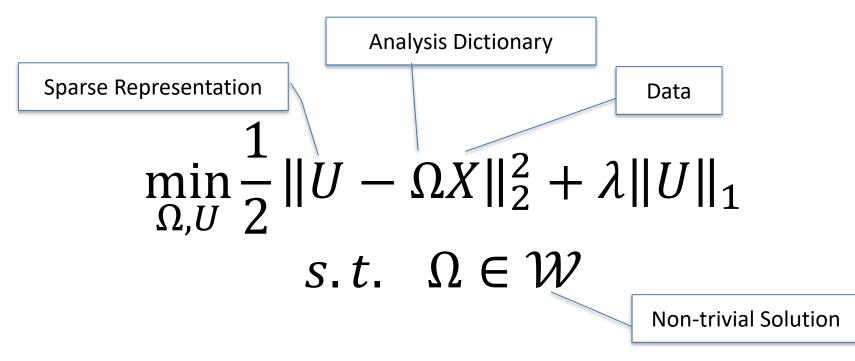
2. [Guo et al., 2016]: topological structures & discriminative labels & ADL +KNN.

Our Work

- Based on ADL framework:
 - A structural mapping:

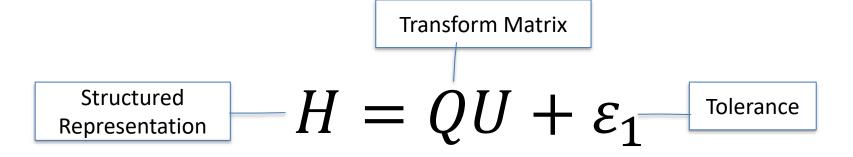
Sparse representations are more consistent

• Classification error feedback:

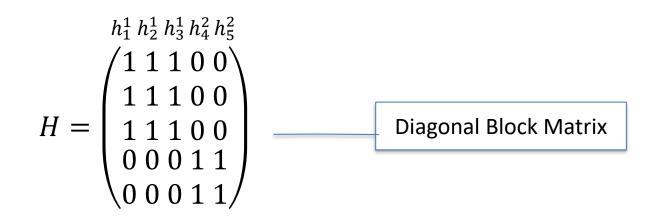

Discriminative multiclass classifier jointly learned

- Efficiently solved by Linearized ADM
- Comparable or better accuracies with extremely fast testing time

Overview


- Introduction
- Structured Analysis Dictionary Learning
 - Conventional ADL
 - Mitigating Inter-Class Feature Interference
 - Structural Mapping of Sparse Representation
 - * Minimal Classification Error
- Experiments and Results
- Conclusion

Conventional ADL

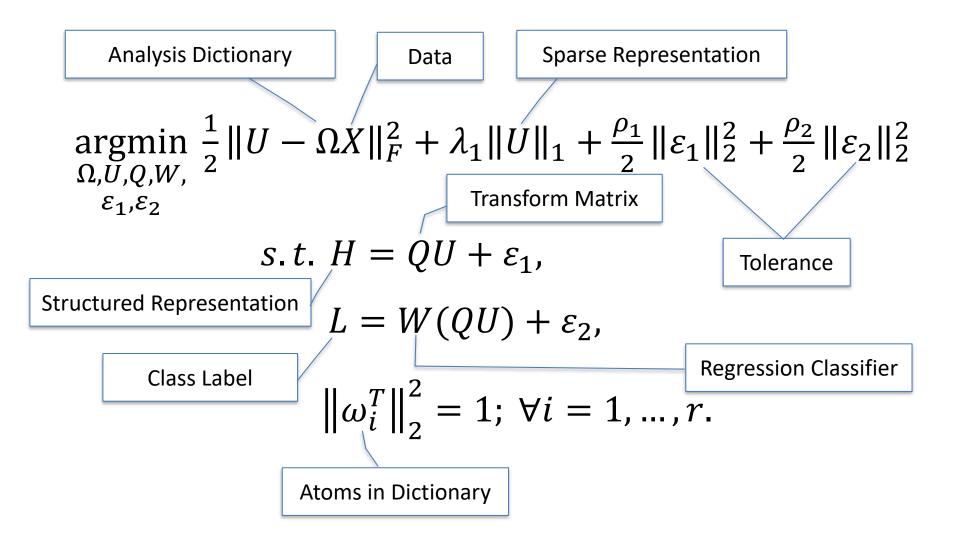


Classification performance is **poor!**

Structural Mapping of Sparse Representation

Example:

Minimal Classification Error


Regression Classifier

$L = WQU + \varepsilon_2$ Tolerance

Example:

$$L = \begin{pmatrix} c_1 c_1 c_1 c_2 c_2 \\ 1 1 1 0 0 \\ 0 0 0 1 1 \end{pmatrix}$$

Structured Analysis Dictionary Learning

Augmented Lagrangian

$$L(\Omega, U, Q, W, Y^{(1)}, Y^{(2)}, \mu) = \frac{1}{2} ||U - \Omega X||_F^2 + \lambda_1 ||U||_1$$

+ $\lambda_2 < Y^{(1)}, H - QU > + \lambda_3 < Y^{(2)}, L - WQU >$
+ $\frac{\mu}{2} ||H - QU||_F^2 + \frac{\mu}{2} ||L - WQU||_F^2$

Tuning Parameters

Overview

- Introduction
- Structured Analysis Dictionary Learning
 - Conventional ADL
 - Mitigating Inter-Class Feature Interference
 - Structural Mapping of Sparse Representation
 - * Minimal Classification Error
- Experiments and Results
- Conclusion

Evaluated Database

Extended YaleB

coast

forest

mountain

bedroom

street

kitchen

Scene15

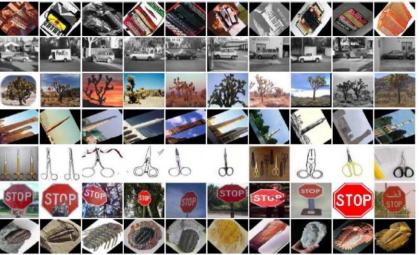
tallbuilding

livingroom

office

store

insidecity



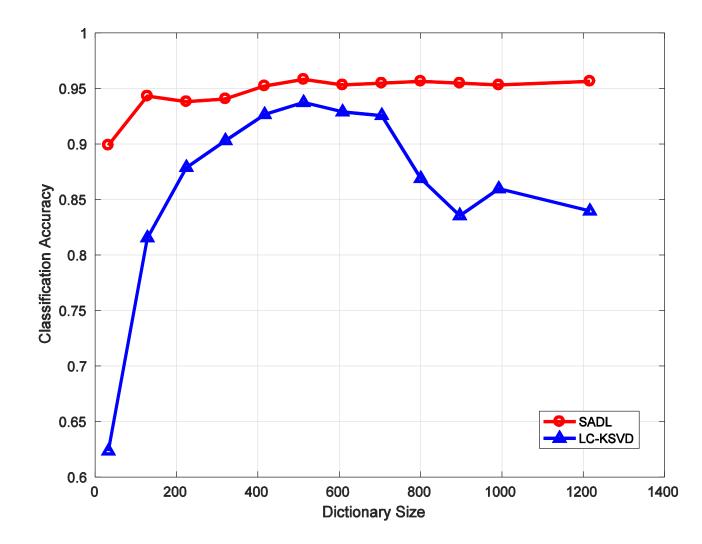
AR

Parameter Settings

• Parameters chosen by 10-fold cross validation.

State-of-the-art Methods

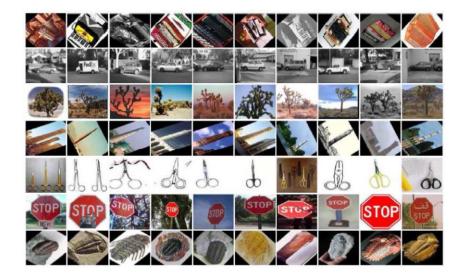
- 1. ADL+SVM: sparse representations learned by ADL and classified by SVM.
- 2. SRC: sparse representations learned by the dictionary composed of training images.
- 3. LC-KSVD: forces each category labels to be consistent.


Extended YaleB

Methods	Classification Accuracy(%)	Training Time(s)	Testing Time(s)
ADL+SVM	82.91%	91.78	1.13×10^{-3}
SRC	80.5%	No Need	3.74×10^{-1}
LC-KSVD	94.56% (<mark>95%</mark>)	234.67	1.63×10^{-2}
SADL	94.91%	51.29	$2.72 imes 10^{-6}$

*95% was reported in the original paper of LC-KSVD.

Extended YaleB Dataset


AR Face

Methods	Classification Accuracy(%)	Training Time(s)	Testing Time(s)
ADL+SVM	90.40%	218.54	9.10×10^{-3}
SRC	66.50%	No Need	5.25×10^{-2}
LC-KSVD	87.78% (93.7%)	244.52	1.42×10^{-2}
SADL	95.08 %	89.13	$3.67 imes 10^{-6}$

*93.7% was reported in the original paper of LC-KSVD.

Caltech101

Methods	Classification Accuracy(%)	Training Time(s)	Testing Time(s)
ADL+SVM	54.93%	447.80	7.75×10^{-3}
SRC	67.70%	No Need	4.34×10^{-1}
LC-KSVD	71.79%	487.61	1.35×10^{-2}
SADL	72.36 %	773.66	$8.10 imes10^{-6}$

NC STATE UNIVERSITY

Scene 15

highway

insidecity

opencountry

industries

coast

tallbuilding

office

store

Methods	Classification Accuracy	(%) Training Time(s)	Testing Time(s)
ADL+SVM	49.35%	110.47	1.14×10^{-4}
SRC	91.80%	No Need	4.06×10^{-1}
LC-KSVD	98.83% (92.9%)	270.93	1.26×10^{-2}
SADL	98.16%	121.02	$9.23 imes 10^{-6}$

*92.9% was reported in the original paper of LC-KSVD.

Conclusion

- > A structural mapping and a classification fidelity are included.
- > Optimization problem efficiently solved by linearized ADM.
- Performances are comparable or better and more stable.
- Thousands of times faster for testing.

Thank you!