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Task
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Task-driven DL

Synthesis Dictionary Learning
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1. Learn class-specific dictionaries

2. Jointly learn a universal dictionary and a multiclass
classifier
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Task-driven Analysis DL

Analysis Dictionary Learning
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Analysis K-SVD, Sparse Null Space (SNS) pursuit

1. [Shekhar et al., 2014]: ADL + SVM

2. [Guo et al., 2016]: topological structures & discriminative
labels & ADL +KNN.



NC STATE UNIVERSITY

Our Work

« Based on ADL framework:
o A structural mapping:
» Sparse representations are more consistent

o Classification error feedback:
» Discriminative multiclass classifier jointly learned

 Efficiently solved by Linearized ADM

« Comparable or better accuracies with extremely fast
testing time
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Conventional ADL

Analysis Dictionary
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Classification performance is POOT !
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Structural Mapping of Sparse Representation

Transform Matrix
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Example:
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Minimal Classification Error

Regression Classifier
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Example:
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Structured Analysis Dictionary Learning

Analysis Dictionary Data Sparse Representation
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Class Label Regression Classifier
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Atoms in Dictionary
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Augmented Lagrangian

1
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Tuning Parameters
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Overview

« EXxperiments and Results
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Evaluated Database
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Parameter Settings

« Parameters chosen by 10-fold cross validation.

State-of-the-art Methods

1. ADL+SVM: sparse representations learned by ADL and classified by
SVM.

2. SRC: sparse representations learned by the dictionary composed of
training images.

3. LC-KSVD: forces each category labels to be consistent.
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Extended YaleB

Methods Classification Accuracy(%) Training Time(s) Testing Time(s)
ADL+SVM 82.91% 91.78 1.13x 1073
SRC 80.5% No Need 3.74 x 1071
LC-KSVD 94.56% (95%) 234.67 1.63 X 1072
SADL 94.91% 51.29 2.72x10°°

*95% was reported in the original paper of LC-KSVD. 16
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Extended YaleB Dataset
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AR Face
Methods Classification Accuracy(%) Training Time(s) Testing Time(s)
ADL+SVM 90.40% 218.54 9.10 x 1073
SRC 66.50% No Need 5.25 X 1072
LC-KSVD 87.78% (93.7%) 244.52 1.42 x 1072
SADL 95.08% 89.13 3.67 x 107°

*93.7% was reported in the original paper of LC-KSVD. 18
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Methods Classification Accuracy(%) Training Time(s) Testing Time(s)
ADL+SVM 54.93% 447.80 7.75 x 1073
SRC 67.70% No Need 434 x 1071
LC-KSVD 71.79% 487.61 1.35 x 1072
SADL 72.36% 773.66 8.10 x 10°°
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Methods Classification Accuracy(%) Training Time(s) Testing Time(s)
ADL+SVM 49.35% 110.47 1.14 x 10~*
SRC 91.80% No Need 4.06 x 1071
LC-KSVD 98.83% (92.9%) 270.93 1.26 X 1072
SADL 98.16% 121.02 9.23 x 1076

*92.9% was reported in the original paper of LC-KSVD. 20
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Conclusion

» A structural mapping and a classification fidelity are included.
» Optimization problem efficiently solved by linearized ADM.
» Performances are comparable or better and more stable.

» Thousands of times faster for testing.
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Thank you!
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