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Introduction

• Handcrafted scoring features have been widely used in
automated speech assessment

• The challenges related to using handcrafted features
• no guarantee to obtain optimal features
• substantial development efforts

• Recent successes of end-to-end deep learning (DL)
approaches on various tasks in computer vision, speech and
language technology provide a promising direction

Previous research

• DL-based ASR improved the automated speech scoring
performance by providing more accurate ASR hypotheses and
acoustic model (AM) scores [1, 2]

• Increasing number of studies of using Neural Network (NN)
methods on rating essays, e.g., [3, 4]

• Limited work on the end-to-end automated speech scoring. For
example, [5] tested the learned and the handcrafted features
together, while it is not clear if the learned features have
independent contributions.

Methods

• End-to-end architecture
• Two DL-based models were used to encode both lexical and 

acoustic cues
1) Lexical input: Recognized words were converted 
to tensors via pre-trained word embeddings
2) Audio input: On each recognized word, used AM score,
word duration, the mean value of pitch, and the mean value of
intensity

• The encoded features were concatenated and fed into a 
linear regression model to predict scores

• Three types of NN encoders
• 1D Convolutional Neural Network (CNN)
• Bi-directional Recurrent Neural Network (RNN) using Long 

Short-Time Memory (LSTM) cells (BD-LSTM RNN)
• BD-LSTM RNN using attention mechanism [6]
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• NN models
• were developed by using Keras Python API with Theano as

backend
• 300-dimensional GloVE word embedding vectors
• Tree Parzen Estimation (TPE) in the Hyperopt Python

package for NN hyperparamters tuning
• Evaluation metric
• Pearson correlation between predicted scores and human

rated scores

• Data sets
• TOEFL Practice Online (TPO): English proficiency test used to

prepare for the TOEFL test
• Elicits spontaneous spoken repsonses; 45 - 60 seconds
• Data partitions: train (2,930), dev (731), eval (1,827)
• All spoken responses were scored by experienced human raters

on a 4-point scale
• ASR
• DNN-HMM hybrid ASR system based on Kaldi
• A 5-layer feed-forward DNN AM using features from the current

frame plus the previous and following 5 frames
• Trained on 819 hours of non-naïve spontaneous speech data

• Conventional model
• Features were extracted by an automated speech scoring

system, including fluency, rhythm, intonation & stress,
pronunciation, grammar, and vocabulary use

• Used SKLL toolkit to run machine learning tasks; Gradient
Boosting Tree (GBT) model was found to perform best

• CNN model’s performance is very close to the conventional 
model’s performance

• BD-LSTM shows a worse performance. Though LSTM helps to 
address the  gradient vanishing issue, for such 1 minute long 
spoken response, using the information passed to the last time
step may still be not enough for accurate predictions

• The attention mechanism along with the BD-LSTM RNN model 
provides higher performance than the conventional model


