

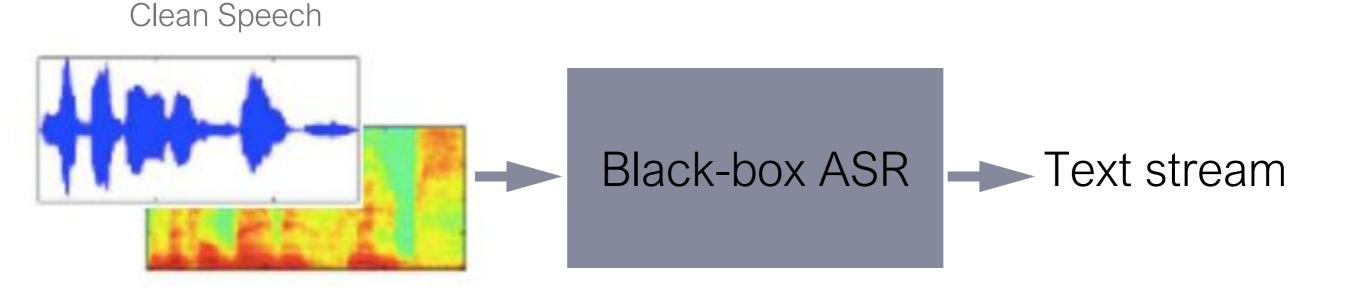
Speech Enhancement with Convolutional-Recurrent Networks

Han Zhao¹, Shuayb Zarar², Ivan Tashev² and Chin-Hui Lee³ Apr. 19th

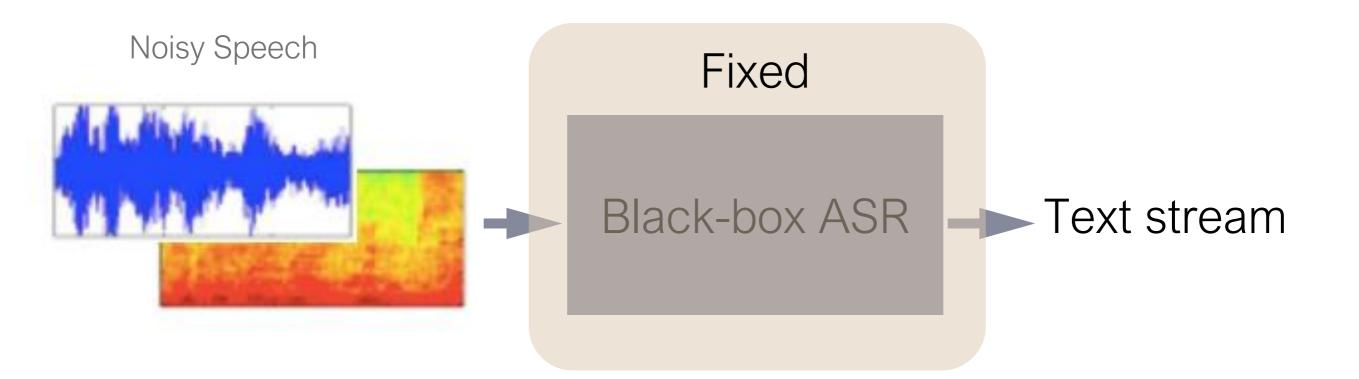
¹Machine Learning Department, Carnegie Mellon University ²Microsoft Research ³School of Electrical Engineering, Georgia Institute of Technology

Carnegie Mellon University

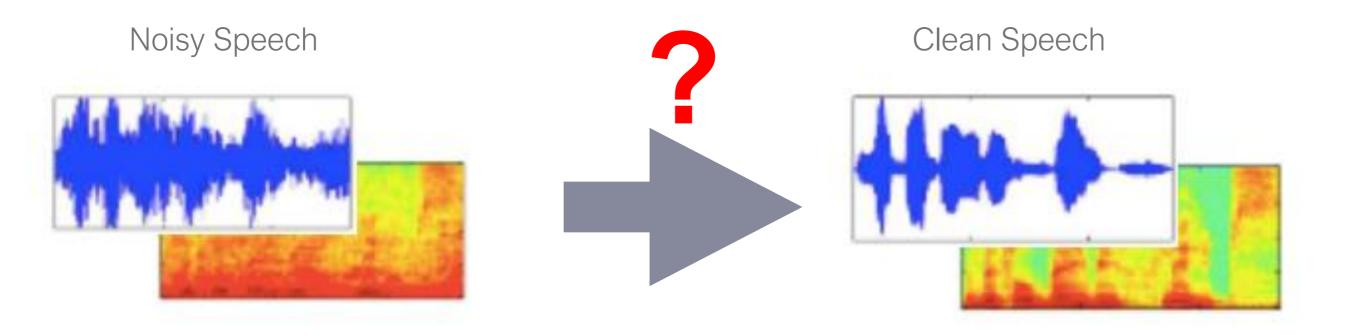
ASR system - Training phase



ASR system - Inference phase

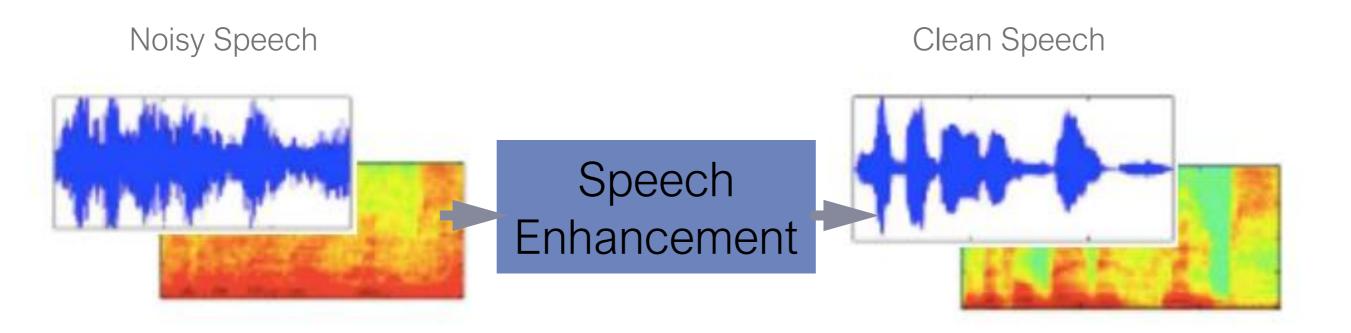


Distribution mismatch



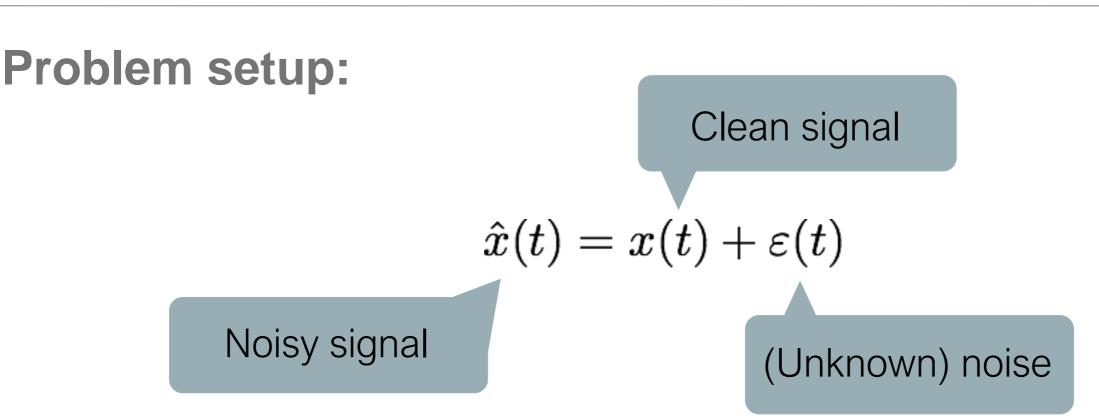
- Similar issues with rendering and perception
- Clean speech is preferred for playback

Speech enhancement: from noisy to clean



Outline

- Background
- Data-driven Approach
- Convolutional-Recurrent Network for Speech
 Enhancement
- Conclusion



Typical assumptions on noise:

- Stationarity: arepsilon(t) is independent of t
- Noise type: $arepsilon(t) \sim \mathcal{N}(0,\sigma^2)$

Background

Classic methods: spectral subtraction (Boll 1979), Minimum mean-squared error estimator (Ephraim et al. 1984), Subspace approach (Ephraim et al. 1995)

Background

Classic methods are based on statistical assumptions of noise:

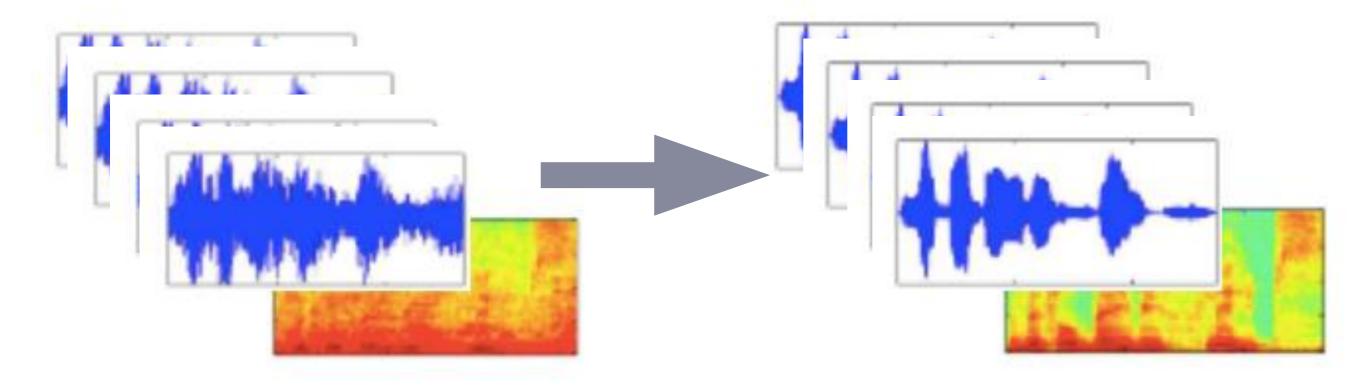
Pros:

- Simple, and computationally efficient
- Optimality under proper assumption
- Interpretable

Cons:

- Limited to stationary noise
- Restricted to noise with specific characteristics

What if we can collect large datasets of paired signals?



What if we can collect large datasets of paired signals?

Given:

- Paired signals $\{(\hat{x}_i, x_i)\}_{i=1}^n, \hat{x}, x \in \mathbb{R}^d$

Goal:

- Build function approximator h, such that

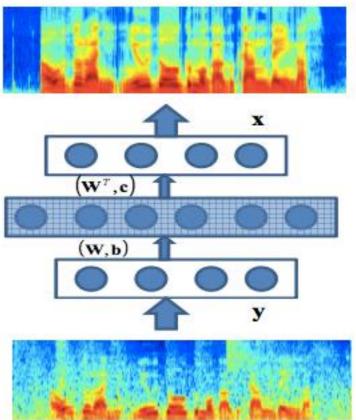
$$h(\hat{x}_i) = x_i, \forall i$$

In short: regression based approach, usually $n\sim 10^7, d\sim 256$

$n\sim 10^7, d\sim 256$

Parametric regression using Neural Networks:

- Flexible for representation learning
- Scale linearly in n and d
- Natural paradigm for multi-task learning by sharing common representations

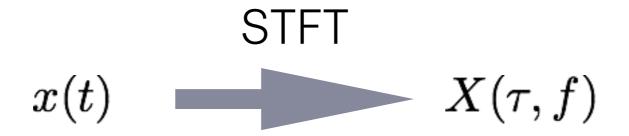


Related work for speech enhancement

- Recurrent network for noise reduction, Maas et al., ISCA 2012
- Deep denoising auto-encoder, Lu et al., Interspeech 2013
- Weighted denoising auto-encoder, Xia et al., Interspeech 2013
- DNN with symmetric context window, Xu et al., IEEE SPL 2014
- Hybrid of DNN suppression rule, Mirsamadi et al., Interspeech 2016

Speech Enhancement Pipeline:

- Short-term Fourier Transform (STFT) to obtain time-frequency signal X(au,f)



- Build neural networks to approximate filter function h such that

$h(\hat{X}) \approx X$ Focus of this talk

• Apply Inverse-STFT (ISTFT) to reconstruct sound wave

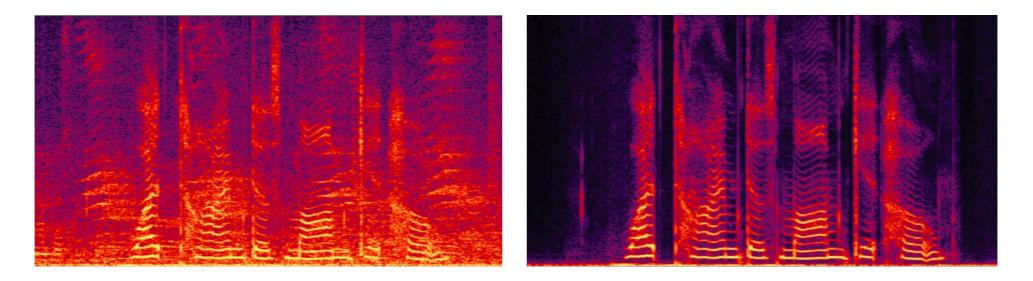
 $\mathsf{ISTFT}(h(\hat{X}))$

Problem setup:

Given time-frequency signal — spectrogram pair

$\{(\hat{X}_i(\tau, f), X_i(\tau, f))\}_{i=1}^n$

where
$$\hat{X}_i, X_i \in \mathbb{R}^{t_i imes d}_+$$

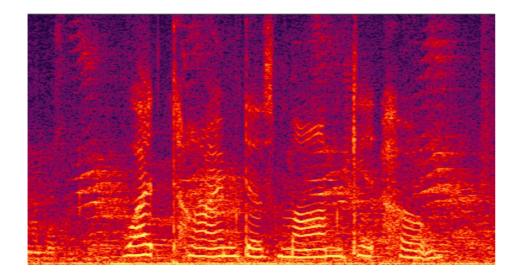


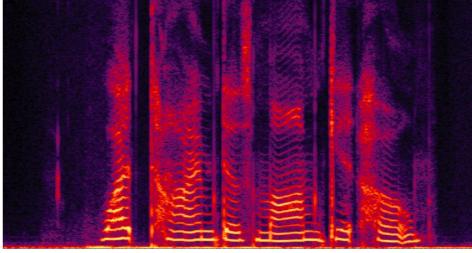
For each utterance, usually $t_i \sim 500$ frames and d=256 frequency bins.

Observations:

Existing DNN-based approaches do not fully exploit the structure of speech signals.

- Frame-based DNN regression approach does not use the temporal locality of spectrogram
- Fully connected DNN regression approach does not exploit the continuity of consecutive frequency bins in spectrogram



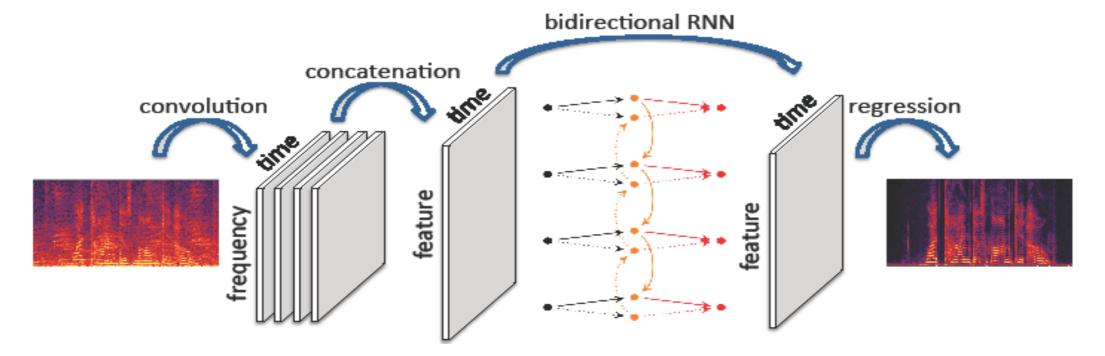


Observations:

Existing DNN-based approaches do not fully exploit the structure of speech signals.

- Frame-based DNN regression approach does not use the temporal locality of spectrogram
 - Use recurrent neural networks
- Fully connected DNN regression approach does not exploit the continuity of consecutive frequency bins in spectrogram
 - Use convolutional neural networks

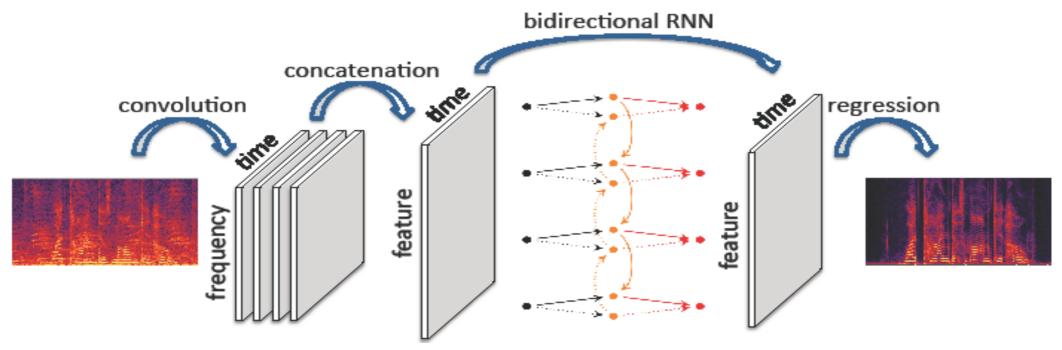
Proposed: Convolution + bi-LSTM + Linear Regression



Objective:

 $\min_{\theta} \quad \sum_{i=1}^{n} ||X_i - h(\hat{X}_i; \theta)||_F^2$

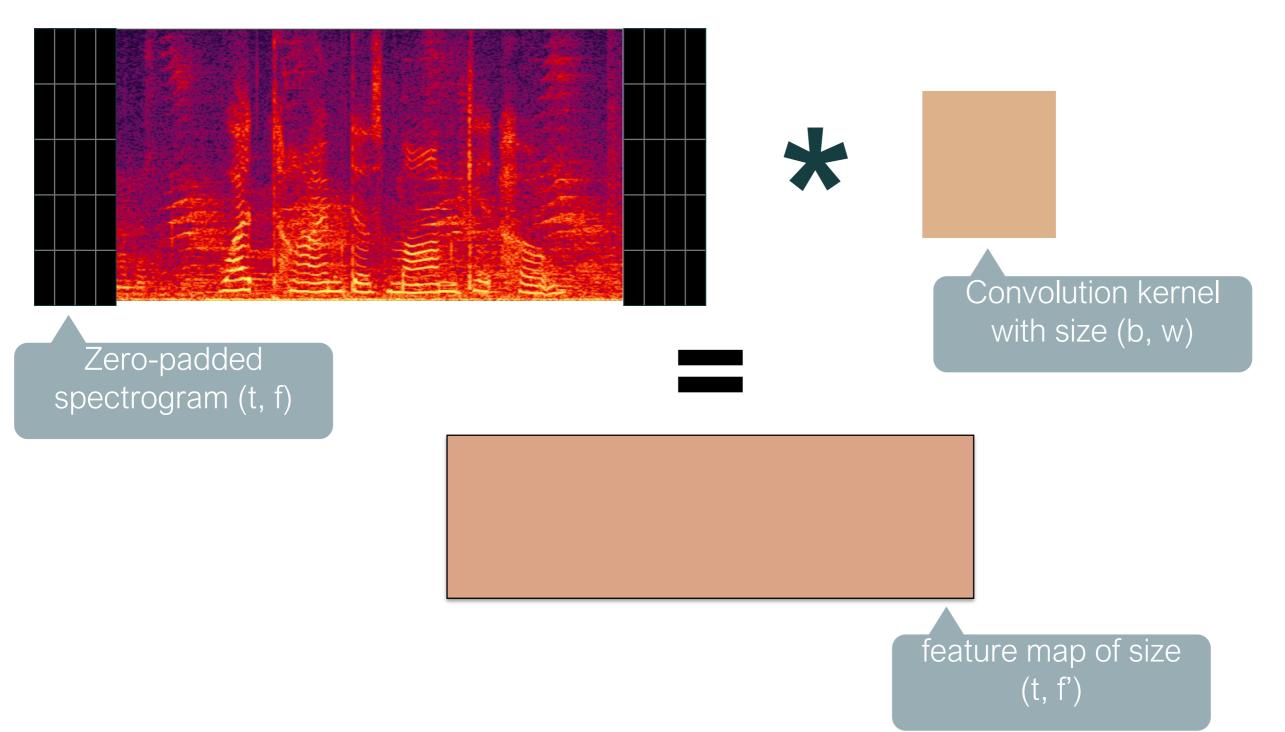
Proposed: Convolution + bi-LSTM + Linear Regression



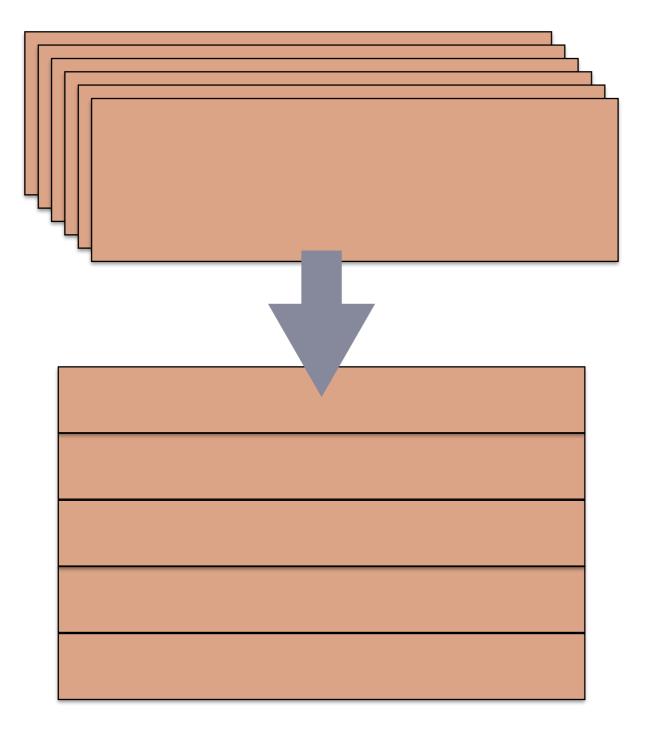
At a high level, why will this model work?

- Continuity of signal in time and frequency domains
- Convolution kernels as linear filters to match local patterns
- bi-LSTM -> symmetric context window with adaptive window size
- End-to-end learning without additional assumptions on noise type

Convolution

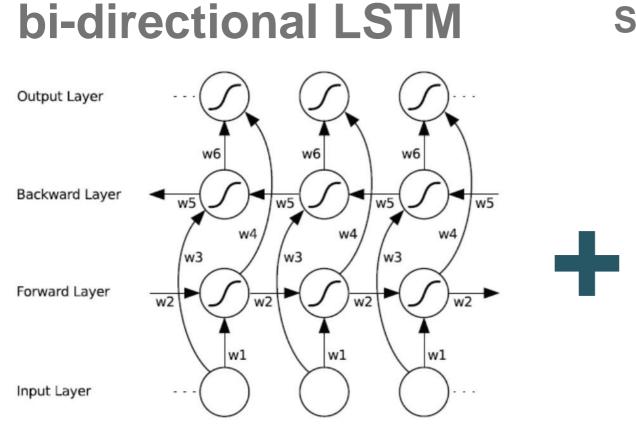


Concatenation of feature maps

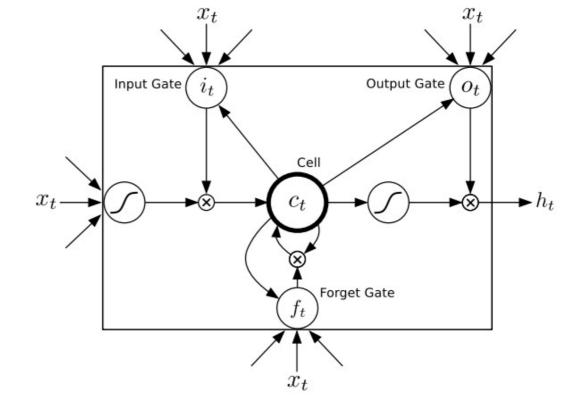


k feature maps, each with size (t, f')

One feature map, with size (t, kf')



State transition function of LSTM cell:



Linear Regression with \mathbb{R}^d_+ Projection

At each time step t:

$$\tilde{X}_t = \max(0, Wo_t + b)$$

where o_t is the output state of bi-LSTM at time step t.

Objective function and Optimization

$$\tilde{X}_t = \max(0, Wo_t + b)$$

MSE:

min
$$\sum_{i=1}^n ||X_i - \tilde{X}_i||_F^2$$

Optimization algorithm: AdaDelta

Dataset

Single channel, Microsoft-internal data

- Cortana utterances: male, female and children
- Sampling rate: 16kHz
- Storage format: 24bits precision
- Each utterance: 5~9 seconds
- Noise: subset of MS noise collection, 377 files with 25 types
- 48 room impulse responses from MS RIR collection

	Training	Validation	Test (seen noise)	Test (unseen noise)
# utterances	7,500	1,500	1,500	1,500

Evaluation Metric

- Signal-to-Noise Ratio (SNR) dB
- Log-spectral Distance (LSD)
- Mean-squared Error in time domain (MSE)
- Word error rate (WER)
- Perceptual evaluation of speech quality P.862 (PESQ)

Comparison with State-of-the-Art Methods

- Classic noise suppressor
- DNN-Symmetric (Xu et al. 2015)
 - Multilayer perceptron, 3 hidden layers (2048x3), 11 context window
- DNN-Causal (Tashev et al. 2016)
 - Multilayer perceptron, 3 hidden layers (2048x3), 7 causal window
- Deep-RNN (Maas et al. 2012)
 - Recurrent autoencoders, 3 hidden layers (500x3), 3 context window

All models are trained using AdaDelta

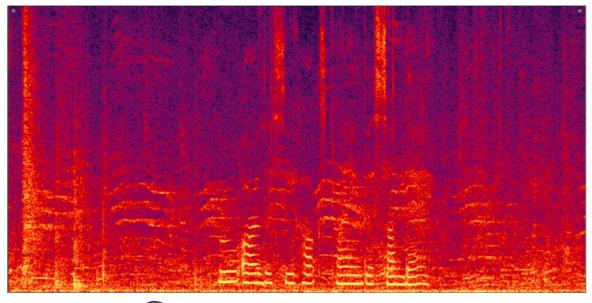
Comparison with State-of-the-Art Methods (seen noise)

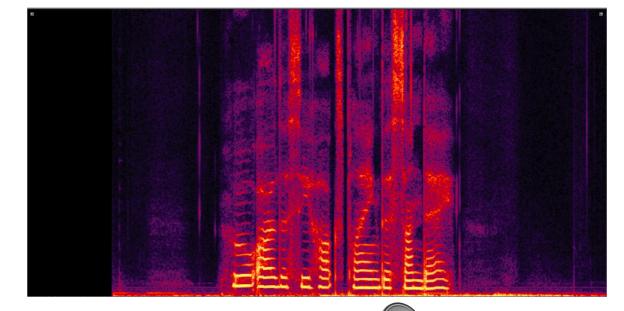
	SNR	LSD	MSE	WER	PESQ
Noisy data	15.18	23.07	0.04399	15.40	2.26
Classic NS	18.82	22.24	0.03985	14.77	2.40
DNN-s	44.51	19.89	0.03436	55.38	2.20
DNN-c	40.70	20.09	0.03485	54.92	2.17
RNN	41.08	17.49	0.03533	44.93	2.19
Ours	49.79	15.17	0.03399	14.64	2.86
Clean data	57.31	1.01	0.0000	2.19	4.48

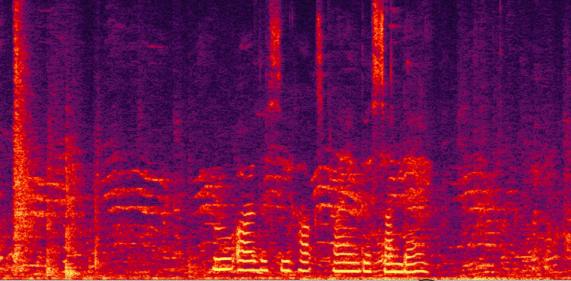
Comparison with State-of-the-Art Methods (unseen noise)

	SNR	LSD	MSE	WER	PESQ
Noisy data	14.78	23.76	0.04786	18.40	2.09
Classic NS	19.73	22.82	0.04201	15.54	2.26
DNN-s	40.47	21.07	0.03741	54.77	2.16
DNN-c	38.70	21.38	0.03718	54.13	2.13
RNN	44.60	18.81	0.03665	52.05	2.06
Ours	39.70	17.06	0.04721	16.71	2.73
Clean data	58.35	1.15	0.0000	1.83	4.48

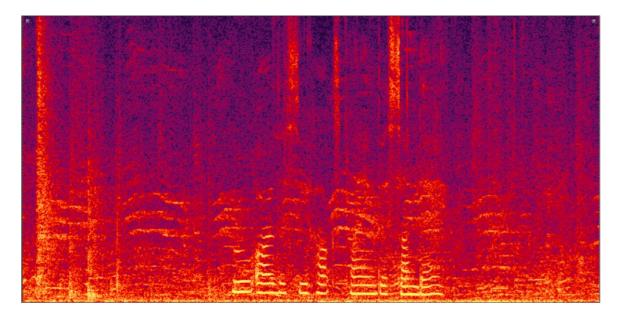
Case Study

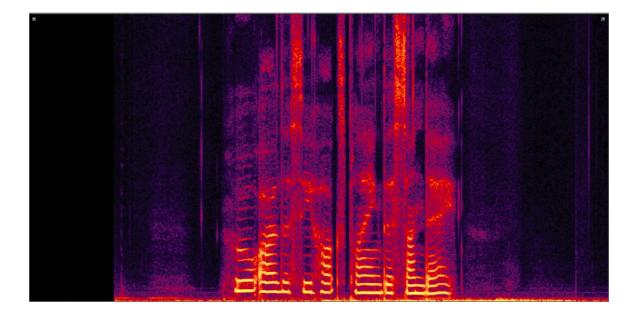


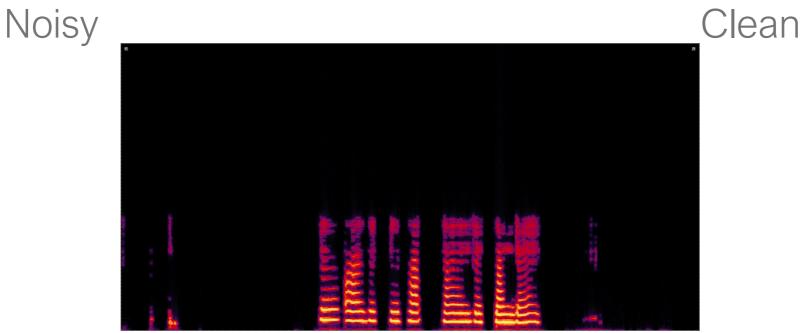




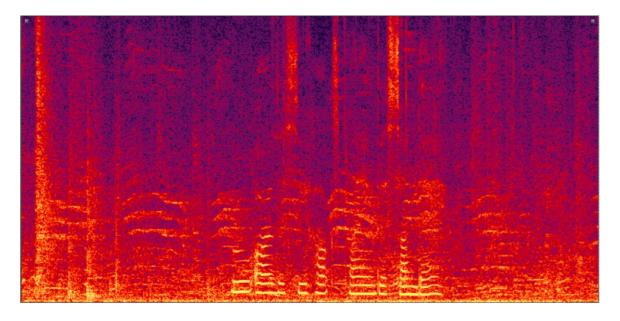
Case Study

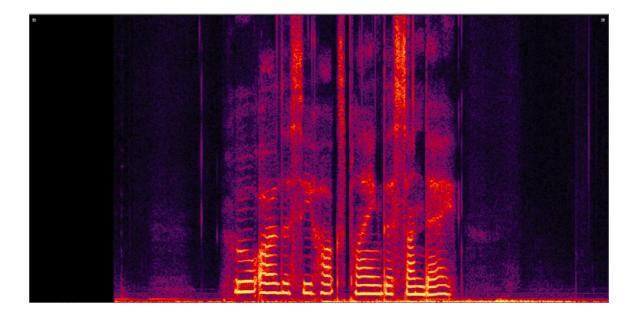


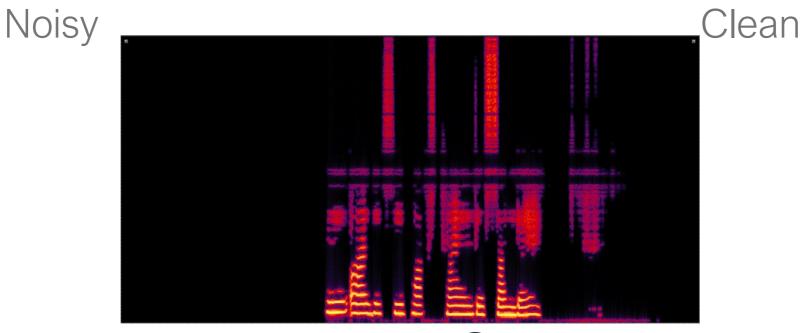




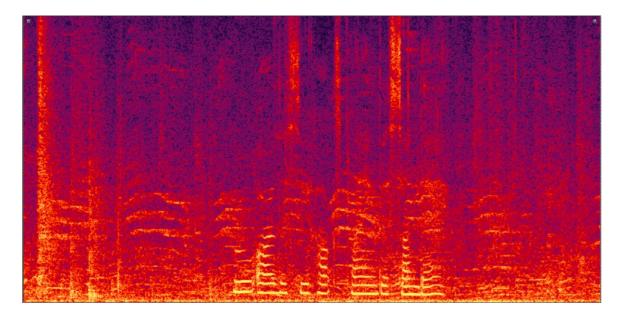
Case Study

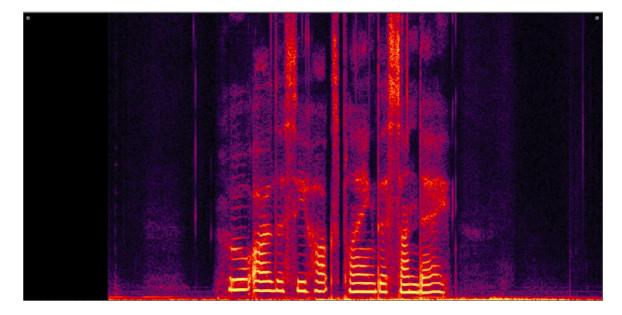




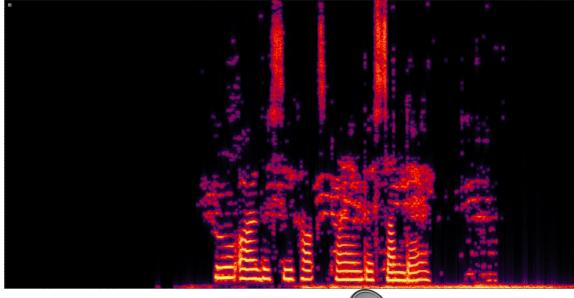


Case Study





Noisy



Conclusion

- Convolutions help capture local pattern
- Recurrence helps model sequential structure
- Our model improves SNR by 35 dB and PESQ by 0.6
- With fixed ASR system, improves WER by 1%
- Good generalizations on unseen noise

Conclusion

Thanks