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Speech Enhancement — Motivation
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ASR system - Training phase

Clean Speech

Black-box ASR Text stream
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Noisy Speech

Black-box ASR Text stream

Fixed

ASR system - Inference phase
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Noisy Speech

Distribution mismatch

Clean Speech

?

• Similar issues with rendering and perception

• Clean speech is preferred for playback
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Noisy Speech Clean Speech

Speech enhancement: from noisy to clean

Speech

Enhancement



Outline

• Background

• Data-driven Approach

• Convolutional-Recurrent Network for Speech 

Enhancement

• Conclusion

6



Background

Problem setup:
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Typical assumptions on noise:

• Stationarity:           is independent of 

• Noise type: 

Classic methods: spectral subtraction (Boll 1979), Minimum mean-squared error 

estimator (Ephraim et al. 1984), Subspace approach (Ephraim et al. 1995)

(Unknown) noise

Clean signal

Noisy signal



Classic methods are based on statistical assumptions of 

noise:
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Background

Pros:
• Simple, and computationally efficient

• Optimality under proper assumption

• Interpretable 

Cons:
• Limited to stationary noise

• Restricted to noise with specific characteristics



Data-driven Approach

What if we can collect large datasets of paired signals?
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Data-driven Approach

What if we can collect large datasets of paired signals?
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Given:

• Paired signals 

Goal:

• Build function approximator  such that 

In short: regression based approach, usually 



Data-driven Approach

Parametric regression using Neural Networks:

• Flexible for representation learning

• Scale linearly in     and  

• Natural paradigm for multi-task learning by sharing 

common representations

11Figure from Lu el al., Interspeech 2013 



Data-driven Approach

Related work for speech enhancement

• Recurrent network for noise reduction, Maas et al., ISCA 2012

• Deep denoising auto-encoder, Lu et al., Interspeech 2013

• Weighted denoising auto-encoder, Xia et al., Interspeech 2013

• DNN with symmetric context window, Xu et al., IEEE SPL 2014

• Hybrid of DNN suppression rule, Mirsamadi et al., Interspeech 2016
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Speech Enhancement Pipeline:

• Short-term Fourier Transform (STFT) to obtain time-frequency signal 

• Build neural networks to approximate filter function      such that

• Apply Inverse-STFT (ISTFT) to reconstruct sound wave    
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Data-driven Approach

STFT

ISTFT(        )

Focus of this talk



Problem setup:

Given time-frequency signal — spectrogram pair

where  

For each utterance, usually                  frames and                 frequency bins. 
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Convolutional-Recurrent Networks for SE



Observations:

Existing DNN-based approaches do not fully exploit the structure of 

speech signals.

• Frame-based DNN regression approach does not use the temporal 

locality of spectrogram

• Fully connected DNN regression approach does not exploit the 

continuity of consecutive frequency bins in spectrogram
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Convolutional-Recurrent Networks for SE



Observations:

Existing DNN-based approaches do not fully exploit the structure of 

speech signals.

• Frame-based DNN regression approach does not use the temporal 

locality of spectrogram

• Use recurrent neural networks

• Fully connected DNN regression approach does not exploit the 

continuity of consecutive frequency bins in spectrogram

• Use convolutional neural networks
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Convolutional-Recurrent Networks for SE



Proposed: Convolution + bi-LSTM + Linear 

Regression

17

Convolutional-Recurrent Networks for SE

Objective:
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Convolutional-Recurrent Networks for SE

At a high level, why will this model work?

• Continuity of signal in time and frequency domains

• Convolution kernels as linear filters to match local patterns

• bi-LSTM -> symmetric context window with adaptive window size

• End-to-end learning without additional assumptions on noise type

Proposed: Convolution + bi-LSTM + Linear 

Regression
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Convolutional-Recurrent Networks for SE

Convolution

*
=Zero-padded 

spectrogram (t, f)

Convolution kernel 

with size (b, w)

feature map of size 

(t, f’)
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Convolutional-Recurrent Networks for SE

Concatenation of feature maps

k feature maps, each with size (t, f’)

One feature map, with size (t, kf’)
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Convolutional-Recurrent Networks for SE

bi-directional LSTM

+

State transition function of LSTM cell:
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Convolutional-Recurrent Networks for SE

Linear Regression with       Projection

At each time step t:

where      is the output state of bi-LSTM at time step t.

MSE:

Optimization algorithm: AdaDelta

Objective function and Optimization
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Experiments

Dataset

Single channel, Microsoft-internal data

• Cortana utterances: male, female and children

• Sampling rate: 16kHz

• Storage format: 24bits precision

• Each utterance: 5~9 seconds

• Noise: subset of MS noise collection, 377 files with 25 types

• 48 room impulse responses from MS RIR collection

Training Validation Test (seen noise) Test (unseen noise)

# utterances 7,500 1,500 1,500 1,500
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Experiments

Evaluation Metric

• Signal-to-Noise Ratio (SNR) dB

• Log-spectral Distance (LSD)

• Mean-squared Error in time domain (MSE)

• Word error rate (WER)

• Perceptual evaluation of speech quality P.862 (PESQ)
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Experiments

Comparison with State-of-the-Art Methods

• Classic noise suppressor 

• DNN-Symmetric (Xu et al. 2015)

• Multilayer perceptron, 3 hidden layers (2048x3), 11 context window

• DNN-Causal (Tashev et al. 2016)

• Multilayer perceptron, 3 hidden layers (2048x3), 7 causal window

• Deep-RNN (Maas et al. 2012)

• Recurrent autoencoders, 3 hidden layers (500x3), 3 context window

All models are trained using AdaDelta
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Experiments

SNR LSD MSE WER PESQ

Noisy data 15.18 23.07 0.04399 15.40 2.26

Classic NS 18.82 22.24 0.03985 14.77 2.40

DNN-s 44.51 19.89 0.03436 55.38 2.20

DNN-c 40.70 20.09 0.03485 54.92 2.17

RNN 41.08 17.49 0.03533 44.93 2.19

Ours 49.79 15.17 0.03399 14.64 2.86

Clean data 57.31 1.01 0.0000 2.19 4.48

Comparison with State-of-the-Art Methods (seen noise)
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Experiments

SNR LSD MSE WER PESQ

Noisy data 14.78 23.76 0.04786 18.40 2.09

Classic NS 19.73 22.82 0.04201 15.54 2.26

DNN-s 40.47 21.07 0.03741 54.77 2.16

DNN-c 38.70 21.38 0.03718 54.13 2.13

RNN 44.60 18.81 0.03665 52.05 2.06

Ours 39.70 17.06 0.04721 16.71 2.73

Clean data 58.35 1.15 0.0000 1.83 4.48

Comparison with State-of-the-Art Methods (unseen noise)
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Experiments

Case Study

Noisy Clean

MS-Cortana
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Experiments

Case Study

Noisy Clean

DNN
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Experiments

Case Study

Noisy Clean

RNN
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Experiments

Case Study

Noisy Clean

Ours
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Conclusion

• Convolutions help capture local pattern

• Recurrence helps model sequential structure

• Our model improves SNR by 35 dB and PESQ by 0.6

• With fixed ASR system, improves WER by 1%

• Good generalizations on unseen noise
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Conclusion

Thanks


