

Motivation

- **Problem:** Lack of labeled training data Recording and annotating emotional speech is a time-consuming process
- **Solution:** Unsupervised feature learning Learn features from widely available general speech
- Use learned features for automatic speech *emotion recognition* (ASER)

Method

We follow these steps to build our system:

- Train an autoencoder
- Freeze the encoder parameters 2
- Add fully connected (FC) layers on top of 3 encoder for classification

Proposed System Overview

Proposed ASER system overview. The Figure 1: dashed red windows represent the sliding window with 50% overlap. From each window, emotion class probabilities (p_1 , p_2 , p_3 , p_4 and p_5) are predicted and the average of these vectors is calculated over all windows is calculated for each utterance.

Unsupervised Learning Approach to Feature Analysis for Automatic Speech Emotion Recognition

Sefik Emre Eskimez, Zhiyao Duan, Wendi Heinzelman eeskimez@ur.rochester.edu, {zhiyao.duan,wendi.heinzelman}@rochester.edu Departmant of Electrical and Computer Engineering, University of Rochester

Denoising Autoencoder (DAE)

Figure 2: DAE network architecture: reconstructing the clean spectrogram from noisy input

Figure 3: AAE network architecture: variational inference on auto-encoder by constraining the latent representation through adversarial training

Variational Autoencoder (VAE)

Figure 4: VAE network architecture: variational inference on auto-encoder by constraining the latent representation to follow a normal distribution

Figure 5: AVB network architecture: unifying VAE and generative adversarial networks (GANs)

Adversarial Autoencoder

% 45.0

Adversarial Variational Bayes (AVB)

Figure 6: The unweighted accuracy rating (UAR) results for the baseline and proposed systems.

(%)	48.0	
	47.0	
	46.0	
	45.0	
	44.0	
	43.0	
	42.0	
	41.0	
	40.0	
	39.0	

Results

Figure 7: F1-score results for the baseline systems and the proposed systems. F1-score is calculated for each class, and their unweighted mean is presented.

Conclusions

 Proposed a CNN based ASER system Systematically explored the following unsupervised methods for ASER: • DAE, VAE, AAE, and AVB

Showed that these methods performed better than the SVM and CNN baselines