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Why Multilingual Speech Recognition Models ?

v

Remarkable progress in speech recognition in past few years

v

Most of this success restricted to high resource languages, e.g.
English

v

Google Voice Search supports ~120 out of 7000 languages

v

Multilingual models:
» Utilize knowledge transfer across languages, and thus alleviate
data requirement
» Successful in Neural Machine Translation (Google NMT)
» Easier to deploy and maintain



Conventional ASR Systems

» Traditional ASR systems are modular

> Require expert curated resources
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» Multilingual models:

» Focus on just the acoustic model (Lin, 2009; Ghoshal, 2013)
» Separate language model and pronunciation model required for
each language



End-to-end ASR Models

» Encoder-decoder models achieved state-of-the-art result on
Google Voice Search task (Chiu et al. 2018)
» Encoder-Decoder models are appealing because:

» Conceptually simple; subsume the acoustic model,
pronunciation model, and language model in a single model.
» No need for expert curated resources!
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End-to-End Multilingual ASR Models
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» We use attention-based encoder-decoder models
» Decoder outputs one character per time step
» For multilingual models, take union over character sets



Multilingual Encoder-Decoder Models

Model Training Inference

Joint model No language ID No language ID

» Naive model; unaware of multilingual nature of data

» Can potentially handle code-switching



Multilingual Encoder-Decoder Models

Model Training Inference

Joint model No language ID No language ID
Multitask model Language ID No language ID

» Trained to jointly recognize language ID and speech



Multilingual Encoder-Decoder Models

Model Training Inference

Joint model No language ID No language ID
Multitask model Language ID No language ID
Conditioned model Language ID Language ID

» Learnt embedding of language ID fed as input to condition
the model

» Language ID embedding can be fed in:
(a) Encoder, (b) Decoder, (c) Encoder & Decoder



Encoder-Conditioned Model
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Task

> Recognize 9 Indian languages with a single model
Bengali  SINIX IR SURAGE ITCOH

Gujarati § Rl e 4 U AA vl UYL - WD

Kannada 0200 FE) o7,
Malayalam «f)mlg)e @RQIIOS QOENESERNHS @RRINO @RGT™)MMENE

Tamil 85 @O BaTTLAWrGDh
Telugu 83 DA 'BDaP' SabEatoocd gDdes’ desrase
Urdu Buoa NS g 558 08 poes Mg gt

» Very little script overlap, except for Hindi and Marathi.
» The union of character sets is close to 1000 characters!

» But the languages have large overlap in phonetic space
(Lavanya et al. 2005).



Experimental Setup

» Training data consists of dictated queries
» Average 230K queries (~170 hrs) per language
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» Baseline: Encoder-decoder models trained for individual
languages



Joint vs Individual
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» Joint model outperforms individual models on all languages!!
» The joint model is not even language aware at test time
» Overall a 21% relative reduction in Word Error Rate (WER)



Picking the Right Script
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Rarely confused between languages



Joint vs Multitask
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Insignificant gains from multitask training



Joint vs Conditioned Models
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» As expected, conditioning the model on the language ID of
speech helps
> Encoder conditioning:

» Performs better than decoder conditioning
» Potential acoustic model adaptation happening



Magic of Conditioning
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Testing the Limits: Code Switching

» Can the joint model code switch between 2 Indian languages
(trained for recognizing them separately)



Testing the Limits: Code Switching

v

Can the joint model code switch between 2 Indian languages
(trained for recognizing them separately)

v

Artificial test set of 1000 utterances of Tamil query followed
by Hindi with 50ms silence in between

v

The model does not code-switch :(

v

Picks one of the two scripts and sticks with it

v

From manual inspection:

» Transcribes either the Hindi/Tamil part in corresponding script
» Transliteration in rare cases



Feeding the Wrong Language ID

» Does the model obey acoustics or is it faithful to language ID?



Feeding the Wrong Language ID

v

Does the model obey acoustics or is it faithful to language ID?
Artificial dataset of 1000 Urdu queries tagged as Hindi

v

v

Transliterates Urdu queries in Hindi's script

v

Learns to disentangle the acoustic-phonetic content from the
language identity

v

Transliterator as a byproduct!



Conclusion

» Encoder-Decoder models:

Elegant and simple framework for multilingual models
Outperform models trained for specific languages
Rarely confused between individual languages

Fail at code-switching

v
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» Recent work along similar lines got promising results as well
(Watanabe, 2017; Kim, 2018; Dalmia, 2018; Tong, 2018)

» Questions?



Conditioning Encoder is Enough
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» Conditioning decoder on top of conditioning the encoder
doesn’t buy us much

> Possibly because the attention mechanism feeds in
information from the encoder to the decoder



