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Why Multilingual Speech Recognition Models ?

I Remarkable progress in speech recognition in past few years

I Most of this success restricted to high resource languages, e.g.
English

I Google Voice Search supports ∼120 out of 7000 languages
I Multilingual models:

I Utilize knowledge transfer across languages, and thus alleviate
data requirement

I Successful in Neural Machine Translation (Google NMT)
I Easier to deploy and maintain



Conventional ASR Systems

I Traditional ASR systems are modular

I Require expert curated resources
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I Focus on just the acoustic model (Lin, 2009; Ghoshal, 2013)
I Separate language model and pronunciation model required for

each language
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End-to-end ASR Models

I Encoder-decoder models achieved state-of-the-art result on
Google Voice Search task (Chiu et al. 2018)

I Encoder-Decoder models are appealing because:
I Conceptually simple; subsume the acoustic model,

pronunciation model, and language model in a single model.
I No need for expert curated resources!
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End-to-End Multilingual ASR Models
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I We use attention-based encoder-decoder models

I Decoder outputs one character per time step

I For multilingual models, take union over character sets



Multilingual Encoder-Decoder Models

Model Training Inference

Joint model No language ID No language ID

Multitask model Language ID No language ID
Conditioned model Language ID Language ID

I Naive model; unaware of multilingual nature of data

I Can potentially handle code-switching



Multilingual Encoder-Decoder Models

Model Training Inference

Joint model No language ID No language ID
Multitask model Language ID No language ID

Conditioned model Language ID Language ID

I Trained to jointly recognize language ID and speech



Multilingual Encoder-Decoder Models

Model Training Inference

Joint model No language ID No language ID
Multitask model Language ID No language ID
Conditioned model Language ID Language ID

I Learnt embedding of language ID fed as input to condition
the model

I Language ID embedding can be fed in:
(a) Encoder, (b) Decoder, (c) Encoder & Decoder



Encoder-Conditioned Model
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Task

I Recognize 9 Indian languages with a single model

I Very little script overlap, except for Hindi and Marathi.

I The union of character sets is close to 1000 characters!

I But the languages have large overlap in phonetic space
(Lavanya et al. 2005).



Experimental Setup

I Training data consists of dictated queries

I Average 230K queries (∼170 hrs) per language
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I Baseline: Encoder-decoder models trained for individual
languages



Joint vs Individual
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I Joint model outperforms individual models on all languages!!

I The joint model is not even language aware at test time

I Overall a 21% relative reduction in Word Error Rate (WER)



Picking the Right Script
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Rarely confused between languages



Joint vs Multitask
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Insignificant gains from multitask training



Joint vs Conditioned Models
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I As expected, conditioning the model on the language ID of
speech helps

I Encoder conditioning:
I Performs better than decoder conditioning
I Potential acoustic model adaptation happening



Magic of Conditioning
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Testing the Limits: Code Switching

I Can the joint model code switch between 2 Indian languages
(trained for recognizing them separately)

I Artificial test set of 1000 utterances of Tamil query followed
by Hindi with 50ms silence in between

I The model does not code-switch :(

I Picks one of the two scripts and sticks with it
I From manual inspection:

I Transcribes either the Hindi/Tamil part in corresponding script
I Transliteration in rare cases
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Feeding the Wrong Language ID

I Does the model obey acoustics or is it faithful to language ID?

I Artificial dataset of 1000 Urdu queries tagged as Hindi

I Transliterates Urdu queries in Hindi’s script

I Learns to disentangle the acoustic-phonetic content from the
language identity

I Transliterator as a byproduct!
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Conclusion

I Encoder-Decoder models:
I Elegant and simple framework for multilingual models
I Outperform models trained for specific languages
I Rarely confused between individual languages
I Fail at code-switching

I Recent work along similar lines got promising results as well
(Watanabe, 2017; Kim, 2018; Dalmia, 2018; Tong, 2018)

I Questions?



Conditioning Encoder is Enough

Bengali

Gujarati
Hindi

Kannada

Malayalam
Marathi

Tamil
Telugu

Urdu

Wt Avg
0

5

10

15

20

25

30

35

W
E

R
(i

n
%

)

Encoder

Encoder+Decoder

I Conditioning decoder on top of conditioning the encoder
doesn’t buy us much

I Possibly because the attention mechanism feeds in
information from the encoder to the decoder


