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Abstract

We present a novel algorithm for solving the convolutional dictionary
learning problem.

In this work, we include two improvements over existing methods:
i An accelerated Proximal Gradient (APG) approach calculated in the fre-
quency domain in order to efficiently solve the dictionary update stage.

ii A partial computation of the coefficient maps through a new update model
reminiscent of the Block Gauss Seidel (BGS) method.

Experimental results: The proposed method is significantly faster than the
state-of-the-art methods. Speedup of 1.5 ∼ 12.5.

Denoising task: The performance is comparable to the existing methods in
terms of PSNR, SSIM and sparsity metrics.

Introduction

Convolutional dictionary learning (CDL)

arg min
{xk ,m},{dm}
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‖xk ,m‖1 s.t. ‖dm‖2 = 1 (1)

where {xk ,m} represents the K sets of M coefficient maps, {dm} a set of M
dictionary filters, and {sk} the K training images.

Used on the fields of:
• Signal/image processing
• Computer vision

Drawbacks:
• High memory requirements
• High computational complexity

• Coefficient update (Sparse coding or SC):

arg min
{xm}

1
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‖
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dm ∗ xm − s‖22 + λ
∑
m
‖xm‖1 . (2)

ADMM: [1] proposed an ADMM-based solution, in which the most expensive
step is handled in the frequency domain via the Sherman-Morrison method.

FISTA: Recent work [2] proposed to compute the gradient step in the
frequency domain, thus reducing the computational cost associated with the
convolution operators.

• Dictionary update (Dictionary learning or DL):
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iCPN
(dm) . (3)

ADMM [2]: Extension of [1] for DL problem, in which most expensive step
can be solved directly using conjugate gradient (CG) or arranged and then
solved with the Iterative Sherman-Morrison (ISM) method.

arg min
{dm},{gm}
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(4)
ADMM-Consensus [3],[4]: The consensus approach (CSS) allows to ob-
tain K independent systems that can be solved with the simple Sherman-
Morrison technique [1].

arg min
{dk ,m},{gm}
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s.t. d1,m = d2,m = · · · = gm (5)
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Proposed Method and Results

Frequency Domain Accelerated Proximal Gradient (APG)

Our algorithm consists of an APG-based solution for each update of the CDL problem, in which most steps are
computed in the frequency domain.

The dictionary update stage is given by the following steps:

• Defining the linear operator Xk ,m, such that xk ,m ∗ dm =
Xk ,mdm and denoting Xk ,m,dm and sk in the DFT domain as
X̂k ,m, d̂m and ŝk , respectively. The fidelity term is arranged as

∑
k

∥∥∥∥∥∑m X̂k ,md̂m − ŝk

∥∥∥∥∥
2

2

=
∑

k

∥∥∥X̂kdf − ŝk

∥∥∥2

2
= ‖Xf df − sf‖

2
2 ,(6)

where X̂k = (X̂k ,1 X̂k ,2 · · · ), Xf = (X̂1 X̂2 · · · )T ,

df = (d̂1 d̂2 · · · )T and sf = (ŝ1 ŝ2 · · · )T .

Resulting gradient: ∇F (df ) = (Xf )
T (Xf Df − sf )

• In constrast with the spatial domain formulation, where an
exact line search is usually computationally prohibitive, the fre-
quency domain formulation does allow an effective exact line
search procedure via

arg min
{ρ}

1
2
‖Xf (df − ρ∇F (df ))− sf‖

2
2 , (7)

Algorithm 1: Frequency domain APG
for k = 1 : maxIter do
• Coefficient update (I):

1: Compute Xk+1
f via the frequency domain

APG approach.
• Dictionary update (II) :

2: Gradient calculation
∇F(gk

f ) = (Xk+1
f )H(Xk+1

f gk
f − sf)

3: Step size calculation
ρ = ‖∇F(gk

f )‖
2
2/‖X

k+1
f ∇F(gk

f )‖
2
2

4: Dictionary computation
hk+1 = IFFT2{gk

f − ρ · ∇F (gk
f )}

dk+1 = proxiCPN
(hk+1)

dk+1
f = FFT2{dk+1}

5: Auxiliary dictionary gk+1
f (Nesterov

accelerated method)

γk+1 = (1 +
√

1 + 4(γk+1)2)

gk+1
f = dk+1

f + γk−1
γk+1 (d

k+1
f − dk

f )

6: Normalization of auxiliary dictionary
gk+1

f =
√

N · gk+1
f /‖gk+1

f ‖2

Time(s)
10 3 10 4

Fu
nc

tio
na

l v
al

ue
 (T

ra
in

in
g 

Se
t)

2870

2880

2890

2900

2910

2920

2930

2940

2950

2960
ISM || FV: 2872.0
CG || FV: 2873.2
CSS || FV: 2873.2
PU-FISTA 1p || FV: 2867.8

(a) FV of the training set

Time(s)
10 2 10 3 10 4

Fu
nc

tio
na

l v
al

ue
 (T

ra
in

in
g 

Se
t)

5500

5600

5700

5800

5900

6000
ISM || FV: 5443.1
CG || FV: 5446.4
CSS || FV: 5452.7
PU-FISTA 1p || FV: 5435.5

(b) FV of the training set

Time(s)
10 2 10 3 10 4

Fu
nc

tio
na

l v
al

ue
 (V

al
id

at
io

n 
Se

t)

530

540

550

560

570

580
ISM || FV: 531.7
CG || FV: 531.9
CSS || FV: 532.7
PU-FISTA 1p || FV: 531.9
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Figure 1 : Value of the training and validation functional vs. execution time for the CDL methods on a set of (a) 20 and (b),(c) 40 training
images.

Partial Update model

The BGS [5] (a.k.a Alternating Optimization) formulation to
minimize a function f (x) is posed as:

xk+1
i = arg min

y∈xi
f (xk

1 , · · · , xk
i−1, y , xk

i+1, · · · , xk
r ) , (8)

where y is the single partition of interest.

Adapting this model to the CDL problem, the SC update can
be written as

x (i ,r )
k ,m = arg min

{xk ,m}

1
2

Pr∑
k=1

∥∥∥∥∥∑m dm ∗ xk ,m − s(r )k

∥∥∥∥∥
2

2

+λ

Pr∑
k=1

∑
m
‖xk ,m‖1,

(9)
where the dataset {sk} was divided into R partitions, with de-
noting Pr is the partition size.

sk = {s(1)k , s(2)k , . . . , s(R)
k }

The complete set of coefficient maps xk ,m is composed from
the current estimated partition and the previous values of the
other ones.

x (i)
k ,m = [x (i−1,1)

k ,m , . . . , x(i,r)k,m, . . . , x (i−1,R)
k ,m ] (10)

This complete set of coefficients is used to estimate
the current dictionary given by (4).

... ...s1 s2 sRsr

... ...x1 x2 xRxr

d

Figure 2 : Partial Update model of the CDL problem.
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(b) 40 training images

Figure 3 : Value of validation functional vs. execution time of our proposed method with 1,
2 and 5 partitions for training set sizes of (a) 20 and (b) 40.
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Figure 4 : Average runtime per iteration for different training set sizes.

Training set ISM GS CSS PU-FISTA 1P PU-FISTA 2P PU-FISTA 5P
10 2222 2993 1475 1015 678 439
40 21051 9343 5866 4003 2504 1668

Table 1 : Execution time in seconds of the CDL methods

Speedup:

• Our AGP algorithm (PU-FISTA-1P) is about 2.2 ∼ 5.3 times faster than
ISM, 2.5 times faster than CG, and 1.5 times faster than CSS.

• The complementary update model provides additional speedup of 1.6 ∼ 2.5
times when using 2 ∼ 5 partitions.

Results: Denoising task

Mandrill Barbara Peppers
PSNR SSIM L0 % PSNR SSIM L0 % PSNR SSIM L0 %

ISM 21.08 0.5286 7.46 23.15 0.6091 5.68 25.36 0.6818 1.58
GC 21.08 0.5282 7.48 23.15 0.6091 5.69 25.35 0.6816 1.60

CSS 21.09 0.5293 7.63 23.14 0.6082 5.73 25.34 0.6805 1.58
PU-FISTA 1p 21.08 0.5293 7.43 23.15 0.6093 5.61 25.36 0.6829 1.55
PU-FISTA 2p 21.08 0.5293 7.38 23.11 0.6084 5.56 25.37 0.6834 1.53
PU-FISTA 5p 21.08 0.5280 7.38 23.08 0.6076 5.57 25.34 0.6825 1.57

Table 2 : Denoising (best λ) of standard images corrupted with AWGN σ = 0.2

Conclusions

New computationally efficient algorithm for solving the CDL problem consid-
ering two complementary formulations. Its speedup is around 1.5 ∼ 12.5.
The reconstruction performance in the denoising task is equivalent as the
existing methods.

Key contributions:

• APG-based solution for both CDL subproblems that has proved to be sig-
nificantly faster than state-of-the-art methods.

• Novel update model, which reduces the computations in our sparse coding
update.


