

Abstract

We present a novel algorithm for solving the convolutional dictionary learning problem.

- In this work, we include two improvements over existing methods: i An accelerated Proximal Gradient (APG) approach calculated in the fre-
- quency domain in order to efficiently solve the dictionary update stage. ii A partial computation of the coefficient maps through a new update model
- reminiscent of the Block Gauss Seidel (BGS) method.

Experimental results: The proposed method is significantly faster than the state-of-the-art methods. Speedup of $1.5 \sim 12.5$.

Denoising task: The performance is comparable to the existing methods in terms of PSNR, SSIM and sparsity metrics.

Introduction

Convolutional dictionary learning (CDL)

 $\arg\min_{\{x_{k,m}\},\{d_m\}} \frac{1}{2} \sum_{k} \left\| \sum_{m} d_m * x_{k,m} - s_k \right\|_2^2 + \lambda \sum_{k} \sum_{m} \|x_{k,m}\|_1 \quad \text{s.t.} \quad \|d_m\|_2 = 1 \quad (1)$

where $\{x_{k,m}\}$ represents the K sets of M coefficient maps, $\{d_m\}$ a set of M dictionary filters, and $\{s_k\}$ the K training images.

Used on the fields of:

- Signal/image processing
- Computer vision

Drawbacks:

• High memory requirements High computational complexity

• Coefficient update (Sparse coding or SC):

$$\arg \min_{\{x_m\}} \frac{1}{2} \|\sum_m d_m * x_m - s\|_2^2 + \lambda \sum_m \|x_m\|_1.$$
 (2)

ADMM: [1] proposed an ADMM-based solution, in which the most expensive step is handled in the frequency domain via the Sherman-Morrison method.

FISTA: Recent work [2] proposed to compute the gradient step in the frequency domain, thus reducing the computational cost associated with the convolution operators.

• Dictionary update (Dictionary learning or DL):

$$\arg \min_{\{d_m\}} \frac{1}{2} \sum_{k} \left\| \sum_{m} x_{k,m} * d_m - s_k \right\|_2^2 + \sum_{m} i_{C_{PN}}(d_m).$$
(3)

ADMM [2]: Extension of [1] for DL problem, in which most expensive step can be solved directly using conjugate gradient (CG) or arranged and then solved with the Iterative Sherman-Morrison (ISM) method.

$$\arg \min_{\{d_m\},\{g_m\}} \frac{1}{2} \sum_{k} \left\| \sum_{m} x_{k,m} * d_m - s_k \right\|_2^2 + \sum_{m} i_{C_{PN}}(g_m) \quad \text{s.t.} \quad d_m - g_m = 0$$

ADMM-Consensus [3],[4]: The consensus approach (CSS) allows to obtain K independent systems that can be solved with the simple Sherman-Morrison technique [1].

$$\underset{\{d_{k,m}\},\{g_m\}}{\arg\min} \frac{1}{2} \sum_{k} \left\| \sum_{m} x_{k,m} * d_{k,m} - s_k \right\|_{2}^{2} + \sum_{m} i_{C_{PN}}(g_m)$$

s.t. $d_{1,m} = d_{2,m} = \dots = g_m$ (5)

References

- [1] B. Wohlberg, "Efficient convolutional sparse coding," Acoustics, Speech and Signal Processing (ICASSP), IEEE International Conference, 2014.
- [2] B. Wohlberg, "Efficient algorithms for convolutional sparse representations," IEEE Transactions on Image Processing, vol. 25, pp. 301–315, Jan. 2016.
- [3] M. Ŝorel and F. Ŝroubek, "Fast convolutional sparse coding using matrix inversion lemma," Digital Signal *Processing*, vol. 55, pp. 44 – 51, 2016.
- [4] C. Garcia and B. Wohlberg, "Subproblem coupling in convolutional dictionary learning," International Conference on Image Processing (ICIP), 2017.
- [5] L. Grippo and M. Sciandrone, "On the convergence of the block nonlinear gauss-seidel method under convex constraints," Operations research letters, vol. 26, no. 3, pp. 127-136, 2000.

Efficient Convolutional Dictionary Learning using Fast Iterative Shrinkage Thresholding Algorithm

Gustavo Silva, Paul Rodríguez {gustavo.silva, prodrig}@pucp.edu.pe Electrical Engineering Department, Pontificia Universidad Católica del Perú

Proposed Method and Results

Frequency Domain Accelerated Proximal Gradient (APG)

$$\sum_{k} \left\| \sum_{m} \hat{X}_{k,m} \hat{d}_{m} - \hat{s}_{k} \right\|_{2}^{2} = \sum_{k} \left\| \hat{X}_{k} d_{f} - \hat{s}_{k} \right\|_{2}^{2} = \|X_{f} d_{f} - s_{f}\|_{2}^{2} (6)$$

where $\hat{X}_{k} = (\hat{X}_{k,1} \ \hat{X}_{k,2} \ \cdots), \qquad X_{f} = (\hat{X}_{1} \ \hat{X}_{2} \ \cdots)^{T},$
 $d_{k} = (\hat{d}_{k} \ \hat{d}_{k} -)^{T}$ and $c_{k} = (\hat{c}_{k} \ \hat{c}_{k} -)^{T}$

search procedure via

images.

Partial Update model

The BGS [5] (a.k.a Alternating Optimization) formulation to minimize a function f(x) is posed as:

$$x_{i}^{k+1} = \arg\min_{y \in x_{i}} f(x_{1}^{k}, \dots, x_{i-1}^{k}, y, x_{i+1}^{k}, \dots, x_{r}^{k}), \quad (a_{i+1}^{k}, \dots, x_{r}^{k})$$

where y is the single partition of interest.

Adapting this model to the CDL problem, the SC update can be written as

$$x_{k,m}^{(i,r)} = \arg\min_{\{x_{k,m}\}} \frac{1}{2} \sum_{k=1}^{P_r} \left\| \sum_m d_m * x_{k,m} - s_k^{(r)} \right\|_2^2 + \lambda \sum_{k=1}^{P_r} \sum_m \|x_{k,m}\|_1,$$
(9)

where the dataset $\{s_k\}$ was divided into R partitions, with denoting P_r is the partition size.

$$\mathbf{s}_k = \{s_k^{(1)}, \ s_k^{(2)}, \dots, s_k^{(R)}\}$$

The complete set of coefficient maps $x_{k,m}$ is composed from the current estimated partition and the previous values of the other ones.

 $x_{k,m}^{(i)} = [x_{k,m}^{(i)}]$

$$x_{m}^{(i,1)}, \ldots, x_{k,m}^{(i,r)}, \ldots, x_{k,m}^{(i-1,R)}$$
 (10)

This complete set of coefficients is used to estimate the current dictionary given by (4).

Figure 2 : Partial Update model of the CDL problem.

Training set	ISM	GS	CSS	PU-						
10	2222	2993	1475							
40	21051	9343	5866							
Table 1 : Execution time in										

Speedup:

• Our AGP algorithm (PU-FISTA-1P) is about 2.2 ~ 5.3 times faster than ISM, 2.5 times faster than CG, and 1.5 times faster than CSS.

• The complementary update model provides additional speedup of 1.6 \sim 2.5 times when using $2 \sim 5$ partitions.

Results: Denoising task

	Mandrill			Barbara			Peppers					
	PSNR	SSIM	L0 %	PSNR	SSIM	L0 %	PSNR	SSIM	L0 %			
ISM	21.08	0.5286	7.46	23.15	0.6091	5.68	25.36	0.6818	1.58			
GC	21.08	0.5282	7.48	23.15	0.6091	5.69	25.35	0.6816	1.60			
CSS	21.09	0.5293	7.63	23.14	0.6082	5.73	25.34	0.6805	1.58			
PU-FISTA 1p	21.08	0.5293	7.43	23.15	0.6093	5.61	25.36	0.6829	1.55			
PU-FISTA 2p	21.08	0.5293	7.38	23.11	0.6084	5.56	25.37	0.6834	1.53			
PU-FISTA 5p	21.08	0.5280	7.38	23.08	0.6076	5.57	25.34	0.6825	1.57			
Table 2 : Denoising (best λ) of standard images corrupted with AWGN $\sigma = 0.2$												

Conclusions

New computationally efficient algorithm for solving the CDL problem considering two complementary formulations. Its speedup is around 1.5 \sim 12.5. The reconstruction performance in the denoising task is equivalent as the existing methods.

Key contributions:

• APG-based solution for both CDL subproblems that has proved to be significantly faster than state-of-the-art methods.

• Novel update model, which reduces the computations in our sparse coding update.

Figure 4 : Average runtime per iteration for different training set sizes.

-FISTA 1P PU-FISTA 2P PU-FISTA 5P 1015 678 439 4003 2504 1668 seconds of the CDL methods