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Abstract

We present a novel algorithm for solving the convolutional dictionary
learning problem.

In this work, we include two improvements over existing methods:
| An accelerated Proximal Gradient (APG) approach calculated in the fre-

qgquency domain in order to efficiently solve the dictionary update stage.
Il A partial computation of the coefficient maps through a new update model
reminiscent of the Block Gauss Seidel (BGS) method.

Experimental results: The proposed method is significantly faster than the
state-of-the-art methods. Speedup of 1.5 ~ 12.5.

Denoising task: The performance is comparable to the existing methods in
terms of PSNR, SSIM and sparsity metrics.

Introduction
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Convolutional dictionary learning (CDL)
arg min J

2
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where {xx n} represents the K sets of M coefficient maps, {dm} a set of M
dictionary filters, and { sk} the K training images.

m

Drawbacks:
e High memory requirements
e High computational complexity

Used on the fields of:
e Signal/image processing
e Computer vision

e Coefficient update (Sparse coding or SC):

1
arg min | Y dmxxm—sl5+ A ||Xmll -

{Xm} m m

ADMM: [1] proposed an ADMM-based solution, in which the most expensive
step is handled in the frequency domain via the Sherman-Morrison method.

(2)

FISTA: Recent work [2] proposed to compute the gradient step in the
frequency domain, thus reducing the computational cost associated with the
convolution operators.

e Dictionary update (Dictionary learning or DL):
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{dm} Kk Il m 5 m
ADMM [2]: Extension of [1] for DL problem, in which most expensive step

can be solved directly using conjugate gradient (CG) or arranged and then
solved with the lterative Sherman-Morrison (ISM) method.
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arg min —S: S:ka * dm — Sk
{dmpAgmt = kIl m

+ Z ICPN(gm) S.1. dm — dm = 0
m

(4)
ADMM-Consensus [3],[4]: The consensus approach (CSS) allows to ob-
tain K independent systems that can be solved with the simple Sherman-

Morrison technique [1].
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arg min — y: y: Xk.m * dk,m — Sk + Z ICPN(gm)
{dk mbAgmt < k || m 2 m
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Proposed Method and Results

Frequency Domain Accelerated Proximal Gradient (APG)

Our algorithm consists of an APG-based solution for each update of the CDL problem, in which most steps are

computed in the frequency domain.

The dictionary update stage is given by the following steps:

e Defining the linear operator Xy m, such that xx , * dm
Xk.mdm and denoting Xy m,, dm and s in the DFT domain as

Xk.m» dm and Sy, respectively. The fidelity term is arranged as
2
K 2 Kk

where )A(k = ()A(k,-] )A(k’z - -),
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Xiedr — 8k|| = |1 X¢ds — s¢]|5 (6)
2
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Xe= (X1 Xo )7,
dr=(dy dp---)" and sp=(315 ).
Resulting gradient: VF(d;) = (X;) T (X;Ds — s¢)

e In constrast with the spatial domain formulation, where an
exact line search is usually computationally prohibitive, the fre-
quency domain formulation does allow an effective exact line
search procedure via

o
arg min || X¢(dy — pVF(d)) - s[5 (7)

Algorithm 1: Frequency domain APG

for Kk = 1 : maxlter do
e Coefficient update (I):

1: Compute X]f“L1 via the frequency domain
APG approach.

e Dictionary update (ll) :
2: Gradient calculation

VF(gF) = (X DR gl — s¢)

3: Step size calculation

p = |IVF(gR)II5/IX¢ VF(gr)|12

4: Dictionary computation

A1 = IFFT2{gf — p- VF(gf)}

dk—|—1 _

K+1
df

K+1
gr "

k-+1
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5: Auxiliary dictionary g

accelerated method)

(Nesterov
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K1, ka1 k
77k+1 (df o df )

6: Normalization of auxiliary dictionary
VN- gt /llgf
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Figure 1 : Value of the training and validation functional vs. execution time for the CDL methods on a set of (a) 20 and (b),(c) 40 training

images.

Partial Update model

The BGS [5] (a.k.a Alternating Optimization) formulation to
minimize a function f(x) is posed as:

K-+1 K
X; ) X/'_‘]a Y

k k
/ ) ’

Xi_|_17 cer, Xr (8)

= arg min f(X1k, ce
YeXi

where y is the single partition of interest.

Adapting this model to the CDL problem, the SC update can
be written as

PI’ 2 Pr
I,r 1 r
X/((,m) = arg mmES: S:dm*xk,m_si) +)‘S:S:HXk,m||1a
{Xk.m} k=11 m 5 k=i m

(9)
where the dataset {s,} was divided into R partitions, with de-
noting Pr is the partition size.

5 — ({1, o@

, Sp (R)}

7Sk

The complete set of coefficient maps xx ,, is composed from
the current estimated partition and the previous values of the
other ones.

(/) (/=

Xpe'm = [Xk,m o

This complete set of coefficients is used to estimate

1,1)

(i,r)
Xem -

’ Xk,m

the current dictionary given by (4).
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Figure 2 : Partial Update model of the CDL problem.
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Figure 3 : Value of validation functional vs. execution time of our proposed method with 1,
2 and 5 partitions for training set sizes of (a) 20 and (b) 40.
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Figure 4 : Average runtime per iteration for different training set sizes.
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Training set| ISM | GS | CSS PU-FISTA 1P PU-FISTA 2P PU-FISTA 5P
10 2222 12993 1475 1015 6/8 439
40 210519343 5866 4003 2504 1668

Table 1 : Execution time in seconds of the CDL methods

Speedup:

e Our AGP algorithm (PU-FISTA-1P) is about 2.2 ~ 5.3 times faster than
ISM, 2.5 times faster than CG, and 1.5 times faster than CSS.

Results: Denoising task

e The complementary update model provides additional speedup of 1.6 ~ 2.5
times when using 2 ~ 5 partitions.

Conclusions

existing methods.

Key contributions:

update.

Table 2 : Denoising (best \) of standard images corrupted with AWGN o = 0.2

New computationally efficient algorithm for solving the CDL problem consid-
ering two complementary formulations. Its speedup is around 1.5 ~ 12.5.
The reconstruction performance in the denoising task is equivalent as the

Mandrill Barbara Peppers

PSNR| SSIM [LO % PSNR SSIM LO % PSNR| SSIM L0 %

ISM 21.08 0.5286 7.4623.15/0.6091|5.68 | 25.36 0.6818 1.58
GC 21.08 0.52827.48 23.15/0.6091|5.69 | 25.35 0.6816 1.60
CSS 21.09 0.5293 7.63 | 23.14 |10.60825.73 | 25.34 |0.6805| 1.58
PU-FISTA 1p| 21.08 |0.5293/7.43 | 23.15 0.6093 5.61 | 25.36 |0.6829 1.55
PU-FISTA 2p| 21.08 0.5293|7.38 23.11 0.6084 5.56 | 25.37 |0.6834 1.53
PU-FISTA 5p| 21.08 0.5280|7.38 | 23.08 0.6076 5.57 | 25.34 |0.6825 1.57

e APG-based solution for both CDL subproblems that has proved to be sig-
nificantly faster than state-of-the-art methods.

e Novel update model, which reduces the computations in our sparse coding



