GLOBAL MULTIVIEW REGISTRATION USING NON-CONVEX ADMM

Sk. Miraj Ahmed
Kunal N. Chaudhury

Department of Electrical Engineering
Indian Institute of Science

International Conference on Image Processing 2017

Multiview Registration

- 3D reconstruction of object from multiple images taken using range scanner.
- Different point clouds with partial overlap information merged together in a common reference frame.

Figure: Range scanner

Figure: Multiple views

- The data collected contain vertex,face and normal informations.
- The scans with overlapping points aligned together by finding relative camera motions (A rototranslation matrix)
- For multiple scans need relative motions to align them in a common reference frame.

Pairwise reistration

- State of the art methods like ICD [Besl et al. 1992] and it's variants to align two overlapping scans.
> Two steps:
> Finding correspondence (assumption: closest points)
> Registration of corresponding point sets

Figure: Aligning two surfaces using ICP

Error propagation sequential registration

- For noisy dataset accumulation of error.
$>$ Bad quality of reconstruction.
> Joint registration: Distribution of error

To Counter error propagation

> Various variants of ICP [Benjemaa et al. 1996] proposed in to reduce pairwise view registration error.
> Picky ICP [Zinsser et al. 2003]

- Go-ICP [Yang et al. 2016]
- Ensure less error after aligning all the views sequentially.
- Relative motion averaging using Lie algebra (state of the art) [Govindu et al. 2014]

Our approach

Objective function incorporates all the scans at a time.

M: no of point clouds
$\mathcal{P}_{1}, \ldots, \mathcal{P}_{M}$: Point clouds

Local coordinates of i-th point cloud \mathcal{P}_{i} :

$$
\left\{x_{i j}^{k}: 1 \leq k \leq n_{i j}\right\}
$$

Local coordinates of j-th point cloud \mathcal{P}_{j} :

$$
\left\{x_{j i}^{k}: 1 \leq k \leq n_{i j}\right\}
$$

Ideally, when $i \sim j$, we have for $1 \leq k \leq n_{i j}$,

$$
\begin{equation*}
\mathrm{R}_{i} \boldsymbol{x}_{j j}^{k}+\boldsymbol{t}_{i}=\mathrm{R}_{j} \boldsymbol{x}_{j i}^{k}+\boldsymbol{t}_{j} . \tag{1}
\end{equation*}
$$

To encounter error objective function:

$$
\min \sum_{i \sim j} \sum_{k=1}^{n_{i j}}\left\|\mathrm{R}_{i} \boldsymbol{x}_{j j}^{k}+\boldsymbol{t}_{i}-\mathrm{R}_{j} \boldsymbol{x}_{j i}^{k}-\boldsymbol{t}_{j}\right\|^{2} \quad \text { [krishnan et al. 2005] }
$$

Variables $\mathrm{R}=\left[\mathrm{R}_{1} \cdots \mathrm{R}_{M}\right] \in \mathbb{R}^{3 \times 3 M}$ and $\mathrm{T}=\left[\boldsymbol{t}_{1} \cdots \boldsymbol{t}_{M}\right] \in \mathbb{R}^{3 \times M}$, we can write the objective in (2) as

$$
\begin{gather*}
\sum_{i \sim j} \sum_{k=1}^{n_{i j}}\left\|R \boldsymbol{d}_{i j}^{k}+\mathrm{T} \boldsymbol{e}_{i j}\right\|^{2}, \tag{2}\\
\boldsymbol{d}_{i j}^{k}=\left(\boldsymbol{e}_{i} \otimes \mathrm{I}\right) \boldsymbol{x}_{i j}^{k}-\left(\boldsymbol{e}_{j} \otimes \mathrm{I}\right) x_{j j}^{k}, \boldsymbol{e}_{i j}=\boldsymbol{e}_{i}-\boldsymbol{e}_{j}, \text { and } \boldsymbol{e}_{i} \in \mathbb{R}^{M}
\end{gather*}
$$

- First diffrentiate the objective w.r.t T(free variable).
$>$ Put T^{*} in the objective.
- Objective becomes after some algebraic manipulation

$$
\text { Trace }\left(C R^{\top} R\right)
$$

- The optimization problem

$$
\begin{equation*}
\min _{\mathrm{R}_{1}, \ldots, \mathrm{R}_{M}} \operatorname{Trace}\left(\mathrm{CR}^{\top} \mathrm{R}\right) \quad \text { s.t. } \quad \mathrm{R}_{1}, \ldots, \mathrm{R}_{M} \in \mathbb{S O}(3) . \tag{3}
\end{equation*}
$$

- Can be converted into a rank-constrained SDP

$$
\begin{equation*}
\min _{G} \quad \operatorname{Trace}(C G) \text { s.t. } G \succeq 0, G_{i j}=I \text {, and } \operatorname{rank}(G)=3 \text {. } \tag{4}
\end{equation*}
$$

Convex Relaxation and problems

- Convex relaxation

$$
\begin{equation*}
\min _{\mathrm{G}} \operatorname{Trace}(\mathrm{CG}) \text { s.t. } \mathrm{G} \succeq 0 \text { and } \mathrm{G}_{i j}=\mathrm{I} . \tag{5}
\end{equation*}
$$

- Can be solved by ADMM [Sanyal et al. SDL 2017]
- Need to project on rank 3 matrix domain: Suboptimal Results [Chaudhury et al. 2015]
- Slow rate of convergence

Non-convex ADMM

- So we solve

$$
\begin{equation*}
\min _{G} \operatorname{Trace}(C G) \text { s.t. } G \succeq 0, G_{i j}=I \text {, and } \operatorname{rank}(G) \leq 3 \text {. } \tag{6}
\end{equation*}
$$

- (4) and (6) are equivalent (see ICIP paper)
- we can write (6) as

$$
\begin{equation*}
\min _{G, H} \operatorname{Trace}(C G) \text { s.t. } G \in \Omega, H \in \Theta \text {, and } G-H=0 \text {. } \tag{7}
\end{equation*}
$$

Ω : Set of symmetric positive semidefinite matrices, size $3 M \times 3 M$, rank at most 3
Θ : Set of symmetric matrices, size $3 M \times 3 M$ whose 3×3 block diagonals are I.
> No need to project G* in Rank 3 domain

ADMM steps

- Augmented lagrangian

$$
\mathcal{L}_{\rho}(\mathrm{G}, \mathrm{H}, \boldsymbol{\Lambda})=\operatorname{Trace}(\mathrm{CG})+\operatorname{Trace}(\boldsymbol{\Lambda}(\mathrm{G}-\mathrm{H}))+\frac{\rho}{2}\|\mathrm{G}-\mathrm{H}\|_{\mathrm{F}}^{2},
$$

- G update

$$
\begin{equation*}
\mathrm{G}^{k+1}=\underset{\mathrm{G} \in \Omega}{\operatorname{argmin}} \mathcal{L}_{\rho}\left(\mathrm{G}, \mathrm{H}^{k}, \boldsymbol{\Lambda}^{k}\right), \tag{8}
\end{equation*}
$$

- H update

$$
\begin{equation*}
H^{k+1}=\underset{H \in \Theta}{\operatorname{argmin}} \mathcal{L}_{\rho}\left(G^{k+1}, H, \Lambda^{k}\right), \tag{9}
\end{equation*}
$$

- Λ update

$$
\begin{equation*}
\Lambda^{k+1}=\Lambda^{k}+\rho\left(\mathrm{G}^{k+1}-\mathrm{H}^{k+1}\right) \tag{10}
\end{equation*}
$$

- Projection of G onto set Ω :

Objective in (8) can be equivalently written as :

$$
\begin{equation*}
(\rho / 2)\|\mathrm{G}-\mathrm{A}\|_{\mathrm{F}}^{2}+c . \tag{11}
\end{equation*}
$$

Where $\mathrm{A}=\left(\mathrm{H}^{k}-\rho^{-1}\left(\mathrm{C}+\Lambda^{k}\right)\right)$
Then $\mathrm{G}^{k+1}=\Pi_{\Omega}(\mathrm{A})$
Let $\mathrm{A}=\lambda_{1} \boldsymbol{u}_{1} \boldsymbol{u}_{1}^{\top}+\cdots+\lambda_{3 M} \boldsymbol{u}_{3 M} \boldsymbol{u}_{3 M}^{\top}$
where $\lambda_{1} \geq \cdots \geq \lambda_{3 M}$

$$
\Pi_{\Omega}(\mathrm{A})=\sum_{i=1}^{3} \max \left(\lambda_{i}, 0\right) \boldsymbol{u}_{i} \boldsymbol{u}_{i}^{\top} .
$$

- Projection of H onto set Θ :

Objective in (9) can be equivalently written as :

$$
\begin{equation*}
(\rho / 2)\|\mathrm{H}-\mathrm{A}\|_{\mathrm{F}}^{2}+d . \tag{12}
\end{equation*}
$$

where $A=\left(G^{k+1}+\rho^{-1} \Lambda^{k}\right)$

Then $H^{k+1}=\Pi_{\Theta}(A)$
$\Pi_{\Theta}(\mathrm{A}): \quad(\mathrm{A})_{[i j]}=I_{3}$

Results on datsets from stanford 3D repository

- Visual and quantitative experiments done on synthetic datasets from Stanford repository.
- Results are shown for sequential ICP, MAICP and our method

3D models : Bunny, Happy Buddha and Dragon

Bunny

Figure: Before alignment

Figure: Sequential ICD

Figure: MAICD

Figure: Our method

Buddha

Figure: Sequential ICP

Figure: MAICP

Figure: Our method

Dragon

Figure: Before alignment

Figure: Sequential ICP

Figure: MAICP

Figure: Our method

Axis angle error comparison

Figure: Bunny

Figure: Buddha

Figure: Dragon

Timing Comparison

Total time (sec)		
Standard datasets	Our method	MAICP
Bunny	401	364
Buddha	175	462
Dragon	165	771

Comparison with convex formulation

Figure: Convex formulation

Figure: Non-convex formulation

Thanks for listening.

