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Multiview Registration

I 3D reconstruction of object from multiple images taken using
range scanner.

I Different point clouds with partial overlap information merged
together in a common reference frame.

Figure: Range scanner

Figure: Multiple views
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I The data collected contain vertex,face and normal informations.

I The scans with overlapping points aligned together by finding
relative camera motions (A rototranslation matrix)

I For multiple scans need relative motions to align them in a
common reference frame.
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Pairwise reistration

I State of the art methods like ICP [Besl et al. 1992] and it’s
variants to align two overlapping scans.

I Two steps:

I Finding correspondence (assumption: closest points)

I Registration of corresponding point sets

Figure: Aligning two surfaces using ICP
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Error propagation sequential registration

I For noisy dataset accumulation of error.

I Bad quality of reconstruction.

I Joint registration: Distribution of error
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To Counter error propagation

I Various variants of ICP [Benjemaa et al. 1996] proposed in to
reduce pairwise view registration error.

I Picky ICP [Zinsser et al. 2003]

I Go-ICP [Yang et al. 2016]

I Ensure less error after aligning all the views sequentially.

I Relative motion averaging using Lie algebra (state of the art)
[Govindu et al. 2014]
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Our approach

Objective function incorporates all the scans at a time.

M: no of point clouds

P1, . . . ,PM : Point clouds

Local coordinates of i-th point cloud Pi :

{xk
ij : 1 ≤ k ≤ nij}

Local coordinates of j-th point cloud Pj :

{xk
ji : 1 ≤ k ≤ nij}
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Ideally, when i ∼ j , we have for 1 ≤ k ≤ nij ,

Rixk
ij + ti = Rjxk

ji + tj . (1)

To encounter error objective function:

min
∑
i∼j

nij∑
k=1

‖Rixk
ij + ti − Rjxk

ji − tj‖2 [krishnan et al. 2005]

Variables R = [R1 · · ·RM ] ∈ R3×3M and T = [t1 · · · tM ] ∈ R3×M , we can
write the objective in (2) as

∑
i∼j

nij∑
k=1

‖Rd k
ij + Teij‖2, (2)

d k
ij = (ei ⊗ I)xk

ij − (ej ⊗ I)xk
ji , eij = ei − ej , and ei ∈ RM
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I First diffrentiate the objective w.r.t T(free variable).

I Put T∗ in the objective.

I Objective becomes after some algebraic manipulation

Trace(CR>R)

I The optimization problem

min
R1,...,RM

Trace(CR>R) s.t. R1, . . . ,RM ∈ SO(3). (3)

I Can be converted into a rank-constrained SDP

min
G

Trace(CG) s.t. G � 0,Gii = I, and rank(G) = 3. (4)
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Convex Relaxation and problems

I Convex relaxation

min
G

Trace(CG) s.t. G � 0 and Gii = I. (5)

I Can be solved by ADMM [Sanyal et al. SPL 2017]

I Need to project on rank 3 matrix domain: Suboptimal Results
[Chaudhury et al. 2015]

I Slow rate of convergence
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Non-convex ADMM

I So we solve

min
G

Trace(CG) s.t. G � 0,Gii = I, and rank(G) ≤ 3. (6)

I (4) and (6) are equivalent (see ICIP paper)

I we can write (6) as

min
G,H

Trace(CG) s.t. G ∈ Ω,H ∈ Θ, and G− H = 0. (7)

Ω : Set of symmetric positive semidefinite matrices , size
3M × 3M , rank at most 3

Θ : Set of symmetric matrices , size 3M × 3M whose 3× 3
block diagonals are I.

I No need to project G? in Rank 3 domain
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ADMM steps

I Augmented lagrangian

Lρ(G,H,Λ) = Trace(CG) + Trace(Λ(G− H)) +
ρ

2
‖G− H‖2

F,

I G update
Gk+1 = argmin

G∈Ω
Lρ(G,Hk ,Λk), (8)

I H update
Hk+1 = argmin

H∈Θ
Lρ(Gk+1,H,Λk), (9)

I Λ update
Λk+1 = Λk + ρ(Gk+1 − Hk+1). (10)
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I Projection of G onto set Ω :

Objective in (8) can be equivalently written as :

(ρ/2)‖G− A‖2
F + c . (11)

Where A = (Hk − ρ−1(C + Λk))

Then Gk+1 = ΠΩ(A)

Let A = λ1u1u>1 + · · ·+ λ3Mu3Mu>3M

where λ1 ≥ · · · ≥ λ3M

ΠΩ(A) =
3∑

i=1

max(λi , 0)uiu>i .
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I Projection of H onto set Θ :

Objective in (9) can be equivalently written as :

(ρ/2)‖H− A‖2
F + d . (12)

where A = (Gk+1 + ρ−1Λk)

Then Hk+1 = ΠΘ(A)

ΠΘ(A) : (A)[ii ] = I3
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Results on datsets from stanford 3D repository

I Visual and quantitative experiments done on synthetic datasets
from Stanford repository.

I Results are shown for sequential ICP, MAICP and our method

3D models : Bunny, Happy Buddha and Dragon
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Bunny

Figure: Before alignment Figure: Sequential ICP
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Figure: MAICP Figure: Our method
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Buddha

Figure: Before alignment Figure: Sequential ICP
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Figure: MAICP Figure: Our method
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Dragon

Figure: Before alignment Figure: Sequential ICP
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Figure: MAICP Figure: Our method
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Axis angle error comparison
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Figure: Bunny
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Figure: Buddha
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Figure: Dragon
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Timing Comparison

Total time (sec)
Standard datasets Our method MAICP
Bunny 401 364
Buddha 175 462
Dragon 165 771
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Comparison with convex formulation
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Figure: Convex formulation
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Figure: Non-convex formulation
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Thanks for listening.


