MULTICHANNEL SPEECH SEPARATION WITH RNN FROM HOA RECORDINGS

Lauréline Perotin^{†‡}, Romain Serizel[‡], Emmanuel Vincent[‡], Alexandre Guérin[†]

[†]Orange Labs [‡]Université de Lorraine, Inria, LORIA

PROBLEM STATEMENT

Distant-microphone voice command for personal digital assistant

- Real room conditions
- Competing speakers
- Ambient babble noise
- → Enhance the target speaker

04-17-2018

LAURÉLINE PEROTIN

2 / 12

Dria

11000110011

PROBLEM STATEMENT

State of the art:

Neural networks to estimate time-frequency masks or multichannel filter parameters

Current challenges:

Overlapping speech

Contributions:

- New location-based method to estimate the parameters of a multichannel filter in overlapping speech conditions
- Ambisonics contents

1. HIGH ORDER AMBISONICS

4 / 12

1. HIGH ORDER AMBISONICS

orange

2. FULL-BAND BEAMFORMING

Mixture: $\mathbf{x}(t, f) = \mathbf{s}(t, f) + \mathbf{n}(t, f)$ Assumption: known direction of arrival of

the target (at least)

HOA anechoic mixing matrix:

\bot	• •
$\sqrt{3}\cos heta_0\cos\phi_0$	••
$\sqrt{3}\sin heta_0\cos\phi_0$	••
$\sqrt{3}\sin\phi_0$	••

 $\sqrt{3}\cos\theta_J\cos\phi_J \\
\sqrt{3}\sin\theta_J\cos\phi_J \\
\sqrt{3}\sin\phi_J \\
\sqrt{3}\sin\phi_J$

HOA beamformer: $\hat{s}(t, f) = \mathbf{u}_1^T \mathbf{A}^{\dagger} \mathbf{x}(t, f)$

 \rightarrow not robust to reverberation and close speakers

LAURÉLINE PEROTIN

2. MULTICHANNEL WIENER FILTERING

Mixture: $\mathbf{x}(t, f) = \mathbf{s}(t, f) + \mathbf{n}(t, f)$

Optimization criterion: $\min \mathbb{E}\{|y(t, f) - \mathbf{u}_1^H \mathbf{s}(t, f)|^2\}$ with $y(t, f) = \mathbf{w}(f)^H \mathbf{x}(t, f)$

Time-invariant multichannel Wiener filter: $\mathbf{w}(f) = [\mathbf{\Phi}_{\mathbf{ss}}(f) + \mathbf{\Phi}_{\mathbf{nn}}(f)]^{-1}\mathbf{\Phi}_{\mathbf{ss}}(f)\mathbf{u}_1$

 \rightarrow Little distortion, but we need the covariance matrices!

2. MASKING-BASED COVARIANCE ESTIMATION

LAURÉLINE PEROTIN

 $\overline{M_s}(t,f) = \frac{|s(t,f)|}{|s(t,f)| + |n(t,f)|}$

04-17-2018

orange

ICASSP

2. MASKING-BASED COVARIANCE ESTIMATION

3. PROPOSED SOLUTION

3. RESULTS

Training data : 10h of mixed speech SIR = 0 dB44 different speakers Room 1 16 positions, $RT_{60} = 270ms$

Test data :

20 min of mixed speech SIR = 0 dB 20 different speakers 4000 words Room 2 42 positions, RT₆₀ = 350ms

Word Error Rate (%)		1 spk	2 spk, angle diff.			
			25 °	$45~\degree$	90 °	
Clean speech			7.4	7.4	7.4	7.4
Mixture			68.5	91.7	88.9	85.4
Beamformer			24.3	76.0	45.9	20.6
Ideal mask			18.3	16.3	15.0	16.3
Filter from ideal mask		13.1	23.0	16.5	11.1	
Network inputs	x	mask	68.6	91.8	84.5	85.7
		filter	25.0	91.6	87.1	86.6
	\hat{s}	mask	61.2	90.8	84.8	78.3
		filter	19.6	67.2	27.1	12.9
	x, \hat{s}	mask	55.9	86.4	61.6	45.0
		filter	17.1	80.9	21.0	10.5
	x,\hat{s},\hat{n}	mask	n/s	60.9	43.9	37.2
		filter		22.3	14.5	11.0

ICASSP

LAURÉLINE PEROTIN

11 / 12

CONCLUSION

order 1 ambisonics 2 speakers + noise Directions of arrival

LSTM-based multichannel Wiener filter

Inputs: omnidirectional mixture

- + beamformer toward target speech
- + beamformer toward competing speech

Performs as good as the filter computed from the ideal mask including with 25° apart speakers

LAURÉLINE PEROTIN

12/12

orange

