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ABSTRACT
In this paper, we examine the problem of locating vector outliers from a large
number of inliers, with a particular focus on the case where the outliers are
represented in a known basis or dictionary. Using a convex demixing formula-
tion, we provide provable guarantees for exact recovery of the space spanned
by the inliers and the supports of the outlier columns, even when the rank of
inliers is high and the number of outliers is a constant proportion of total ob-
servations. Comprehensive numerical experiments on both synthetic and real
datasets demonstrate the efficiency of our proposed method.

MOTIVATION
Data Model

Our particular focus here is on identifying anomalous regions in images. In some
applications, information of the anomalous part is known. More specifically,
suppose we observe a data matrix M ∈ Rn1×n2 , which we assume admits a
decomposition of the form:

M ≈ L + DC, (1)

where D ∈ Rn1×d is a known dictionary, L ∈ Rn1×n2 is unknown, with
rank(L) = r, C ∈ Rd×n2 is an unknown but column-wise sparse matrix. We
refer to DC as the anomalous part of the data, and our aim is to detect this.

M = L + DC

DC = D × C

There are indeed some cases where the dictionary/basis of the saliency is known
in real-world applications. For example, in hyperspectral imaging data the dic-
tionary can be constructed from the object’s class by sampling. The figure
below depicts a general example of salient object detection, using hyperspectral
imaging data collected by ROSIS sensor from [1].

(a) (b) (c)

Given 200 hyperspectral images of size 145× 145, which can be regarded as a
tensor Y of size 145× 145× 200 as in (a).

(1) Extract voxels of Y, which are column vectors of size 200× 1.

(2) Combine column vectors to be a matrix (b) of size 200 × 1452, which
we call M matrix

(3) Detect dictionary-based outliers in M, and construct an outlier map (c)

Related Works

Model (1) can be viewed as a generalization of the principal component anal-
ysis (PCA) [4], where the goal is to estimate a low dimensional embedding of
given data, and its robust variants, where the data matrix is contaminated by
sparse outliers [2, 6]. However, existing saliency identification methods (e.g., [3]
and many others) only consider the case when there is no outlier information
available. A closely related model is studied in [6], which detects the saliency
in the case D = I, using a convex formulation termed Outlier Pursuit (OP).
When the subspace spanned by D contains the subspace spanned by L, we
can simply multiply the (pseudo) inverse D† of D on both sides of (1) and
apply OP. However, in general scenario, such an operation results in the loss
of information on L. In addition, the prior knowledge on D enables enhanced
performance of recovery, especially when rank(L) is high.

Idea

Question: How to take advantage of the prior information of the known
dictionary?

Answer: In the classical OP procedure, incorporating the decomposition
of the outlier (DC) −→ DOP (Dictionary-based Outlier Pursuit)

OUR APPROACH
Given the data matrix M and the dictionary D, we consider to recover the inlier
space U and the support of the ourlier columns IC from a noisy observation
via the following optimization procedure, which we call Dictionary based Outlier
Pursuit (DOP),

min
L,C
‖L‖∗ + λ‖C‖1,2 s.t. ‖M− L−DC‖F ≤ εN, (2)

where ‖L‖∗ as the nuclear norm of L, ‖C‖1,2 =
∑
j ‖C:,j‖2, C:,j is the j-th

column of C:,j , and λ ≥ 0 is a regularization parameter.

ALGORITHM FOR DOP
We adopt an accelerated proximal gradient descent method to solve the out-
lier pursuit problem (2), along the lines of the algorithm proposed in [5].

Algorithm 1. APG (Accelerated Proximal Gradient descent)
solver for (2)

Input: M, R, λ, v, ν0, ν̄, and Lf = λmax
(
[ILR]′[ILR]

)
Initialize: L[0] = L[−1] = 0L×T , C[0] = C[−1] = 0F×T ,
t[0] = t[−1] = 1, and set k = 0.

while not converged do
TL[k] = L[k] +

t[k−1]−1
t[k]

(L[k]− L[k − 1])

TC[k] = C[k] +
t[k−1]−1
t[k]

(C[k]−C[k − 1])

GL[k] = TL[k] + 1
Lf

(M−TL[k]−RTC[k])

GC[k] = TC[k] + 1
Lf

R′(M−TL[k]−RTC[k])

UΣV′ = svd(GL[k]), L[k + 1] = USν[k]/Lf (Σ)V′

C[k + 1] = Sν[k]/Lf (GC[k])

t[k + 1] =
[
1 +

√
4t2[k] + 1

]
/2

ν[k + 1] = max{vν[k], ν̄}
k ← k + 1

end while
return L[k], C[k]

PRELIMINARIES
Let the compact SVD of L be UΣVT , where rank(L) = r, U ∈ Rn1×r ,
Σ ∈ Rr×r , V ∈ Rn2×r .

Given a matrix X ∈ Rn1×n2 , define:

• PU (X) = PUX and PV(X) = XPV, where PU = UU> and PV =

VV>

• PL(X) = (PU + PV − PUPV)(X) = PUX + XPV −PUXPV

• PC(X) is obtained by keeping the i-th column of X unchanged for
i ∈ IC, otherwise setting the i-th column of X to be zero for i /∈ IC

• RC is the column space of the dictionary D

• βV = ‖VV>‖∞,2, βU,V = ‖D>UV>‖∞,2

DEFINITIONS
We introduce two definitions:

(a1) Two subspaces L and D are said to satisfy the subspace incoherence
property with parameter µ(L,D) if

max
X∈D\{0}

‖PL(X)‖F
‖X‖F

≤ µ(L,D). (3)

(a2) An n1 × d matrix D is said to satisfy the restricted frame property on
x ∈ RC if for any fixed x ∈ RC,

αl‖x‖22 ≤ ‖Dx‖22 ≤ αu‖x‖
2
2, (4)

where αu and αl are upper and lower bounds respectively with αu ≥
αl > 0.

MAIN THEOREM
Theorem 1. Suppose M = L + DC + N with (L,C) belonging to the or-
acle model {M,U, IC}, ‖N‖F ≤ εN, rank(L) = r, and |IC| = k with k
satisfying k ≤ 1/(4β2

V). Suppose subspaces L and D satisfy (3) with param-
eter µ(L,D) ∈ [0, 1), and D satisfies (4) on RC with αu ≥ αl > 0, and
C:,j ∈ RC for all j ∈ [n2]. If λ, r and k satisfy

(
√
kβ2

V + 1)βU,V

1
2 − kβ

2
Vb1

≤ λ ≤
b1
2 −

√
rαuµ(L,D)
√
k

,

then there exists (L̃, C̃) ∈ {M,U, IC} such that the optimal solution (L̂, Ĉ)
of DOP in (2) satisfies

‖L̂− L̃‖F ≤
(
8
√
r + 9

√
rαu
λ

)
εN,

‖Ĉ− C̃‖F ≤ 9
√
r
(
1 +

√
αu
λ

)
εN.

Complexity Analysis

Suppose that

(1) 1 . αl ≤ αu . 1, which can be easily met by a tight frame when
n1 > d, or a RIP type condition when n1 < d,

(2) µ(L,D) . 1
r and βU,V . 1

r (satisfied when DC and L has small
coherence),

then the condition above becomes

k = O(
nL
r·µV

) and 1
k

. λ . 1√
k
.

EXPERIMENTS – SYNTHETIC DATA
We examine the performance of our approach first on synthetically generated
data, generated as follows:

• For DOP and Inv+OP, we set n1 = 100, n2 = 1000, d = 50 or 150,
and choose r ∈ {5, 10, . . . , 100} and k ∈ {50, 100, . . . , 1000} with
λ = 0.5 for d = 50 and λ = 1.5 for d = 500.

• For each pair of r and k, we generate L = [UV>0n1×k] ∈ Rn1×n2 ,
C = [0n1×(n2−k)W] ∈ Rd×n2 , where U ∈ Rn1×r , V ∈ Rn2×r and
W ∈ Rd×k has i.i.d. N (0, 1) entries. D ∈ Rn1×d is generated with
i.i.d. N (0, 1) entries and we normalize columns of M = L + DC to be
unit vectors.

• For OP, we generate L ∈ Rn1×n2 and C ∈ Rn1×n2 in the same way
except that C = DW with d = 50 such that columns of C spans a
50-dimensional subspace of R100.

• The phase transition results with different r and k for OP, Inv+OP,
and DOP when n1 = 100, n2 = 1000, d = 50 are shown in Figure 1
(a), (b), (c) respectively; The phase transition result for DOP when
n1 = 100, n2 = 1000, d = 150 is shown in Figure 1 (d). We perform
50 random trials to record the times of successful recovery (from 0 to
50) of {U, IC}. We also choose different λ’s for each case to find the
best performing setting. Here white regions correspond to all successes
and black regions correspond to all failures.

Competing Algorithms:

(1) Dictionary based Outlier Pursuit (DOP): the proposed dictionary based
outlier detection approach.

(2) Outlier Pursuit (OP): the classical outlier pursuit approach without dic-
tionary information proposed in [6].

(3) Inverse + Outlier Pursuit (Inv+OP): multiplying the pseudo inverse of
D on both sides of (1) then applying OP

(a) OP (b) Inv+OP (c) DOP (d) DOP

Figure 1. Phase transitions for (a) OP, (b) Inv+OP, and DOP with (c) d = 50;
(d) d = 150.

EXPERIMENTS – REAL DATA
We also applied our approach to real hyperspectral image data:

• The raw data is a 3-way tensor Y ∈ Rs×m×w, where w is the number
of frequency bands, and s and m are the 2-D image dimensions.

• For Indian Pines collected by AVIRIS sensor [1]: s = m = 145
and w = 200; for Pavia University collected by ROSIS sensor
(http://www.ehu.eus/ccwintco/): s = m = 131 and w = 201.

• The data matrix M ∈ Rw×sm is formed by unfolding the tensor data
Y along the third dimension, where each column of M is the voxel of
Y. This corresponds to, e.g., n1 = 200 and n2 = 1452 = 21, 025 for
Indian Pines. The recover results are shown in Figure 2.

• The ROC metrics, i.e., true positive rate (TPR), false positive rate
(FPR), and area under curve (AUC), for all approaches are also pre-
sented in Table 1 when we choose different sizes of dictionaries (column
numbers d=4, d=15).
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ABSTRACT

Hyperspectral (HS) imaging sensors record the response of
material(s) to different wavelengths of the electromagnetic
spectrum. Often, we seek to locate certain target material in
a HS image. With each material/object possessing its own
characteristic spectral signature based on its composition, HS
imaging can be used to locate a target material via the sensed
spectral response. However, even signatures of different mate-
rials are often correlated. To this end, we derive motivations
from works on HS imaging and robust PCA-like methods to
model a HS image as a superposition of a low-rank component
and a dictionary sparse component, wherein the dictionary
consists of the a priori known characteristic spectral responses
of the target object we wish to localize. Next, we develop
a technique to recover these components, and leverage our
own recent theoretical results to provide recovery guarantees
for this problem. Finally, we analyze the applicability of the
proposed model by experimental validation on real HS data
and compare its performance with a matched filtering (MF)
based algorithm for a classification task.

Index Terms— hyperspectral imaging, robust PCA, dic-
tionary sparse, target localization, remote sensing.

1. INTRODUCTION

Hyperspectral (HS) imaging is an imaging modality which
senses the intensities of the reflected electromagnetic waves
corresponding to different wavelengths of the electromagnetic
spectra, often invisible to the human eye. As the spectral re-
sponse associated with an object/material is dependent on its
composition, HS imaging lends itself very useful in identi-
fying target objects/materials via their characteristic spectra
or signature responses, often referred to as "endmembers"
in the literature. Typical applications of HS imaging range
from monitoring agricultural use of land, catchment areas of
rivers and water bodies, food processing and surveillance, to
detecting various minerals, chemicals, and even presence of
life sustaining compounds on distant planets. However, often,
these spectral signatures are highly correlated, making it dif-
ficult to detect region of interest based on these endmembers.
Analysis of these characteristic responses to localize a target
material/object serves as the primary motivation of this work.
Specifically, we aim to answer the following question – given

a few characteristic spectral signatures of a material of interest,
can we effectively localize the said target material in a HS
image?

We begin by formalizing the problem. Each HS image
I 2 Rn⇥m⇥f , is a stack of f-2-D images each of size n ⇥ m,
as shown in Fig. 1(a). Here, f is determined by the number of
frequencies or frequency bands across which the we measure
the reflectances. Overall, each voxel, or volumetric element, of
a HS image is a vector of length f , and represents the response
of the material in a pixel of the 2-D grid to f frequencies.

As a particular scene is composed of only a small num-
ber of objects/materials, the corresponding characteristic re-
sponses of each voxel are low-rank [1]. For example, while
imaging an agricultural area we would expect to record re-
sponses from objects like the biomass, farm vehicles, the road,
houses and water bodies and so on. Further, the spectra of
complex materials are often assumed to be a linear mixture of
those of the constituent materials [1, 2], i.e HS image voxels
can be viewed as being generated by a linear mixture model [3].
We use this property of the HS images to decompose the HS
responses into a low-rank part and a dictionary sparse part.

(a) (b)
Fig. 1: The Hyperspectral image data. Panel (a) shows the HS data-
cube corresponding to the Indian Pines dataset. The top layer is
depicted in RGB for visualization, however each slice is a grayscale
image of reflectances. Panel (b) shows a slice of the dataset (f = 50).

Formally, let Y 2 Rf⇥nm be formed by unfolding the HS
image I, such that, each column of Y corresponds to a voxel.
Now, let Y arise as a result of a superposition of a low-rank
component X 2 Rf⇥nm with rank r, and a dictionary sparse
component expressed here as RA, i.e.,

Y = X + RA. (1)

Here, R 2 Rf⇥d is an a priori known dictionary composed
of normalized characteristic responses of the material/object,

ms

w

(a) (b) GT (c) OP (d) Inv+OP (e) DOP

(f) (g) GT (h) OP (i) Inv+OP (j) DOP

Figure 2. Demonstration of (a) a slice of Indian Pines HS data array (with
w = 50) and (f) a slice of Pavia University HS data array (with w = 100). (b,
g) are the ground truth, (c, h) are detection results of OP, (d, i) Inv + OP, and
(e, j) DOP for Indian Pines and Pavia University.

Approach d = 4 d = 15
TPR FPR AUC TPR FPR AUC

DOP 0.989 0.012 0.998 0.989 0.017 0.998
Inv + OP 0.926 0.033 0.980 0.903 0.005 0.946

OP 0.097 0.024 0.095 0.097 0.024 0.095

Table 1. Comparison of the ROC metrics for different methods.

DISCUSSION
Figure 1: For DOP, even when L has full row rank, we can recover IC exactly
for a wide range of k (coincides with our theory). For OP, the recovery fails
when rank r is high, even for very small k. Inv+OP can recover IC for a smaller
range of k when L has full row rank.

Figure 2: DOP and Inv+OP outperform OP on both real datasets. Moreover,
the real detection result of DOP is better than Inv+OP’s.

Table 1: DOP achieves better ROC metrics which means that the detection
result of DOP is more accurate than the results of Inv+OP and OP.
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