

Summary

- Motivation: Speech Recognition Errors & Robustness

Unsupervised ASR-error Adaptation

annotation on the speech recognized text.

➢ Result:

> Slot tagging task of SLU

Input: words	show	flights	from	Boston	to	New	
Output: slots	Ο	Ο	Ο	B-FromCity	Ο	B-ToCity	I-

Robustness of SLU to ASR-error

- Inputs of SLU (e.g. slot tagging):
 - (1) Manual transcription (Oracle)
- □ Target of SLU (e.g. slot tagging):
 - SLU module independently.

> Traditional Methods: Prepare Training Data

- (1) Human annotation on the manual transcription. XManual transcription is **mismatched** with ASR output.
- (2) Human annotation on the ASR output. X
- Unlabeled ASR output for adaptation.

Robust Spoken Language Understanding with Unsupervised ASR-error Adaptation

Su Zhu, Ouyu Lan, Kai Yu SpeechLab, Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China {paul2204,blue-0-0-,kai.yu}@sjtu.edu.cn

2. Unsupervised ASR-error Adaptation

	Data partitions				
		labelled transcripts (tag)			
	train+valid	Transcripts (tscp)			
		ASR top-hyp. (asr)			
		labelled ASR top-hyp.	18		
	test	labelled transcripts	18		

- $L^{tag} + L^{rec}$: Training is driven by slot tagging and reconstruction. $L^{tag} + L^{rec} + L^{adv}$: Additional adversarial task classification.

[1] Young-Bum Kim, Karl Stratos, and Dongchan Kim, "Adversarial adaptation of synthetic or stale data," in Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, 2017, pp. 1297–1307.

- **D** Bidirectional language model (BLM): $p(\mathbf{x}|\mathbf{x}) = \sum_{i} p(\mathbf{x}_{i+1}|\mathbf{x}_{0:i}) + \sum_{i} p(\mathbf{x}_{i-1}|\mathbf{x}_{i:T+1})$

System	Recon-	F1-score on				F1-score of slot	
	struction		SR-output	manual transcript		segmentation	
 Oracle ₁		84.65		88.01		– upper bound	
Oracle ₂			85.64	89.82			
Baseline ₁			81.90	88.63		caused by	
Baseline ₂			78.71	84.94		ASR-errors	
Domain adaptation	S2S		82.52	87.44			
$L^{tag} + L^{rec}$	W2W		82.82	88.00		BIM is most	
$L^{tag} + L^{rec}$	S2S		83.31	88.54		suited.	
$L^{tag} + L^{rec}$	BLM		84.87	89.16			
$L^{tag} + L^{rec}$	BLM ^{sep}		84.02	89.77			
$L^{tag} + L^{rec} + L^{adv}$	BLM		85.11	88.99			

- We need more data to verify our method.

