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Why matrix completion? Global positioning
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Figure: Graph with partially observable
distance.

Find X such that
0 1 7 X
1 0 X 5
7 X 0 3
X 5 3 0


has low-rank.
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Why matrix completion? Netflix problem

Figure: Netflix recommendation system.
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Mathematical formulation

Let A be the partially observable matrix and Ω be the set of
observable indices.
The matrix completion problem can be written as:

min
X∈Rn1×n2

Rank(X)

s.t. Xij = Aij, ∀ (i, j) ∈ Ω.

Unless under specific scenarios1, the matrix completion problem
is non-convex with the presence of local minima.

1 Rong Ge, Jason D. Lee, and Tengyu Ma “Matrix Completion has No Spurious Local Minimum" in Neural Information
Processing Systems (NIPS), 2016.
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Assumptions

In the rest of this talk, we assume the following
The partially observed matrix A is generated from the
multiplication of two i.i.d. Gaussian matrices with zero mean and
unit variance, i.e., A = UVT with U ∈ Rn1×r and V ∈ Rn2×r i.i.d.
N (0, 1).
The set Ω is sampled according to a Bernoulli model. In other
words, each entry (i, j) with 1 ≤ i ≤ n1 and 1 ≤ j ≤ n2 is included in
the set Ω with probability p.
The completion rank r is known apriori.

Douik and Hassibi - An Improved Initialization for Matrix Completion ICASSP’18 - Calgary, Alberta, Canada, 15-20 Apr. 5 / 21



Related Work and Results

Convex Relaxation Non-convex Approach

Objective min
X∈Rn1×n2

||X||2∗ min
X∈Rn1×n2

||A− X||2Ω

Constraint X�Ω = A�Ω Rank(X) = r

Dimension n1n2 (n1 + n2)r

Algorithm(s) SDP2 Riemannian optimization3

Alternate projection4

Guarantees

2 Candès, E. J. and Terence, T. “The Power of Convex Relaxation: Near-optimal Matrix Completion" in IEEE Transactions
on Information Theory, 2010.

3 Bart, V. “Low-rank matrix completion by Riemannian optimization" in SIAM Journal on Optimization, 2013.
4 Prateek, J. and Praneeth, N. and Sujay, S. “Low-rank matrix completion using alternating minimization" in proc. of ACM

symposium on Theory of computing, 2013
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Is the convex approximation good?

Rank of the Matrix r
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Figure: Performance of the nuclear
norm relaxation.

Drawbacks:
Only works for low-rank,
Very slow because large SDP.
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Performance of the Riemannian approach
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Figure: Performance of the nuclear
norm relaxation.
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Figure: Riemannian approach with
arbitrary initialization.

Douik and Hassibi - An Improved Initialization for Matrix Completion ICASSP’18 - Calgary, Alberta, Canada, 15-20 Apr. 8 / 21



Pros and cons of the Riemannian approach

Advantages:
Large convergence region,
Very fast as compared to
solving SDPs.

Drawbacks:
No convergence theoretical
guarantees,
Performance sensitive to
initialization.
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Figure: Riemannian approach with
arbitrary initialization.
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Matrix completion as norm minimization

The matrix completion problem can be reformulated as:

(Pr) min
X∈Rn1×n2

||A− X||2Ω =
∑

(i,j)∈Ω

(Aij − Xij)
2

s.t. Rank(X) = r.

However, as expected the problem still hard and requires a good
initialization.
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Successive rank one update

Starting with X∗0 = 0, we propose a successive rank one update
initialization as follows

X∗n+1 = arg min
X∈Rn1×n2

||A− X||2Ω

s.t. X = Xn + xyT

x ∈ Rn1 , y ∈ Rn2

The above problem is solved using the Riemannian5 method on
the low-rank manifold.
The algorithm is executed r times to produce a rank r initialization.

5 Bart, V. “Low-rank matrix completion by Riemannian optimization" in SIAM Journal on Optimization, 2013.
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Are we close to the optimal solution?

The performance of the initialization is difficult to characterize.
However, a sufficient condition is given extending the SVD.
The extended SVD (E-SVD), like the SVD, can be computed
efficiently (n4 operations as compared to n3 for the SVD).
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Extended Singular Value Decomposition

Recall that the SVD of A is given by A = UΣVT such that
Σ =diag(σ1 ≥ · · · ≥ σn ≥ 0), U = [u1, · · · , un] ∈ Rn1×n and
V = [v1, · · · , vn] ∈ Rn2×n, n = min(n1, n2) satisfying

1 UTU = In.
2 VTV = In.

3 〈uivT
i |ujvT

j 〉 = δij, 1 ≤ i, j ≤ n

The Extended-SVD of A given the set of revealed entries Ω is
given by A�Ω = (UΣVT)�Ω with Σ =diag(σ1 ≥ · · · ≥ σn ≥ 0),
U = [u1, · · · , un] ∈ Rn1×n and V = [v1, · · · , vn] ∈ Rn2×n,
n = min(n1, n2) satisfying

1 UTU = diag(γ1, · · · , γn).
2 VTV = In.
3 〈uivT

i |ujvT
j 〉Ω = δij, 1 ≤ i, j ≤ n.
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Performance of the proposed initialization

Recall the matrix completion problem

(Pr) min
X∈Rn1×n2

||A− X||2Ω

s.t. Rank(X) = r.

Theorem
A sufficient condition for the output Xr after r iterations to serve as a
good initialization to (Pr), in the sense that it is closer in the Frobenius
norm to the optimal solution than the all zeros matrix, is:

(1− α)||A− UrΣrVT
r ||Ω ≤

√
1 + α2||A||Ω.

where UrΣrVT
r is the truncated E-SVD of A, and α =

√
1−p

p , with p
being the probability that an entry is revealed.
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Performance of the proposed initialization
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Figure: Region in which the sufficient
condition of Theorem 1 is satisfied for

a 20× 20 matrix.
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Figure: Region in which the
initialization is close to the optimal

solution for a 20× 20 matrix.
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How to deal with local minima?

Being close to the optimal is good but not sufficient.
Presence of local minima in the search space.
Use multiple norms, denoted by Ψ, derived from the Ω-norm to
randomize the location of local minima while preserving the
position of the global one.

In other words, for positive and random Ψij’s, we solve the problem

(Pr) min
X∈Rn1×n2

||A− X||2Ψ =
∑

(i,j)∈Ω

Ψij(Aij − Xij)
2

s.t. Rank(X) = r.

Douik and Hassibi - An Improved Initialization for Matrix Completion ICASSP’18 - Calgary, Alberta, Canada, 15-20 Apr. 15 / 21



How to deal with local minima?

Being close to the optimal is good but not sufficient.
Presence of local minima in the search space.
Use multiple norms, denoted by Ψ, derived from the Ω-norm to
randomize the location of local minima while preserving the
position of the global one.

In other words, for positive and random Ψij’s, we solve the problem

(Pr) min
X∈Rn1×n2

||A− X||2Ψ =
∑

(i,j)∈Ω

Ψij(Aij − Xij)
2

s.t. Rank(X) = r.

Douik and Hassibi - An Improved Initialization for Matrix Completion ICASSP’18 - Calgary, Alberta, Canada, 15-20 Apr. 15 / 21



Landscape change with Ψ
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Figure: Effect of the random norm Ψ.
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Performance of the proposed method
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Figure: Riemannian approach with
improved initialization.
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Much faster convergence
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Initialization UrΣrV
T
r

Initialization 0

Figure: Speed of convergence for
n = 50 and r = 29.

Impressive convergence
region.
Very close to the information
theoretical bound.
Highly efficient use of the
computation resources.
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Figure: Speed of convergence for
n = 50 and r = 33.

Impressive convergence
region.
Very close to the information
theoretical bound.
Highly efficient use of the
computation resources.
Solve previously impossible to
solve configuration.
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Conclusion

This work propose an efficient method, with theoretical
guarantees, to find an improved initialization to the matrix
completion problem.
To mitigate the effect of the local minima, a new class of norms is
introduced to random the location of local minima.
Simulation results shows a two-fold improvement:

1 Larger convergence region.
2 Better convergence speed.

Extension of the work to an online setting is of high interest to
industry.
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THANK YOU

For more questions, please email

ahmed.douik@caltech.edu
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