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Why matrix completion? Global positioning

Figure: Graph with partially observable
distance.
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Why matrix completion? Netflix problem
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Figure: Netflix recommendation system.
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Mathematical formulation

@ Let A be the partially observable matrix and Q2 be the set of
observable indices.

@ The matrix completion problem can be written as:
min  Rank(X)
XER"I Xny
s.t. Xij = Aij; v (l,]) e Q.

! Rong Ge, Jason D. Lee, and Tengyu Ma “Matrix Completion has No Spurious Local Minimum" in Neural Information
Processing Systems (NIPS), 2016.
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Mathematical formulation

@ Let A be the partially observable matrix and Q2 be the set of
observable indices.

@ The matrix completion problem can be written as:
min  Rank(X)
XER"I Xny
s.t. Xij = Aij; v (l,]) e Q.

@ Unless under specific scenarios', the matrix completion problem
is non-convex with the presence of local minima.

! Rong Ge, Jason D. Lee, and Tengyu Ma “Matrix Completion has No Spurious Local Minimum" in Neural Information
Processing Systems (NIPS), 2016.
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In the rest of this talk, we assume the following

@ The partially observed matrix A is generated from the
multiplication of two i.i.d. Gaussian matrices with zero mean and
unit variance, i.e., A = UVT with U € R"*" and V € R™*" i.i.d.
N(0,1).

@ The set Q is sampled according to a Bernoulli model. In other
words, each entry (i,j) with 1 <i<n; and 1 <j < nyisincluded in
the set Q with probability p.

@ The completion rank r is known apriori.
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Related Work and Results

Convex Relaxation Non-convex Approach
Objective min [|X|2 min ||A —X|3
XE]R/’I] Xllz XGRVII an
Constraint Xo0Q2=A0Q Rank(X) =r
Dimension niny (n1 + no)r
. . . . . 3
Algorithm(s) SDP2 Riemannian opt.lmlz'atlé?n
Alternate projection
Guarantees Q

2 Candés, E. J. and Terence, T. “The Power of Convex Relaxation: Near-optimal Matrix Completion” in IEEE Transactions
on Information Theory, 2010.

3 Bart, V. “Low-rank matrix completion by Riemannian optimization" in SIAM Journal on Optimization, 2013.

4 Prateek, J. and Praneeth, N. and Sujay, S. “Low-rank matrix completion using alternating minimization" in proc. of ACM
symposium on Theory of computing, 2013
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Is the convex approximation good?
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Figure: Performance of the nuclear
norm relaxation.
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Is the convex approximation good?
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Performance of the Riemannian approach
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Pros and cons of the Riemannian approach
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arbitrary initialization.
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Matrix completion as norm minimization

@ The matrix completion problem can be reformulated as:

(Br) min JIA =XIla = > (Ay—Xy)°
€ (i)

s.t. Rank(X)=r.
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Matrix completion as norm minimization

@ The matrix completion problem can be reformulated as:

(Br) min JIA =XIla = > (Ay—Xy)°
€ (i)

s.t. Rank(X)=r.

@ However, as expected the problem still hard and requires a good
initialization.
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Successive rank one update

@ Starting with X{; = 0, we propose a successive rank one update
initialization as follows

X1 =arg_ min [|A —X][g
XG]R/HI ><I12
s.t. X =X, +xy’
xeR", ye R”

@ The above problem is solved using the Riemannian® method on
the low-rank manifold.

@ The algorithm is executed r times to produce a rank r initialization.

S Bart, V. “Low-rank matrix completion by Riemannian optimization" in SIAM Journal on Optimization, 2013.
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Are we close to the optimal solution?

@ The performance of the initialization is difficult to characterize.
@ However, a sufficient condition is given extending the SVD.

@ The extended SVD (E-SVD), like the SVD, can be computed
efficiently (n* operations as compared to »* for the SVD).
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Extended Singular Value Decomposition

@ Recall that the SVD of A is given by A = UX V7 such that

Y =diag(oy >+ >0,>0),U=uy, ---, u,] € R""*" and
V=I[vi, -+, vu) € R™*", n = min(ny, ny) satisfying

Q U'u=1,.

Q Viv=l,
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Extended Singular Value Decomposition

@ Recall that the SVD of A is given by A = UX V7 such that

Y =diag(oy >+ >0,>0),U=uy, ---, u,] € R""*" and
V=I[vi, -+, vu) € R™*", n = min(ny, ny) satisfying

Q U'u=1,.

Q Viv=l,

Q (w/|uv]) =6y 1<ij<n
@ The Extended-SVD of A given the set of revealed entries Q is
given by A©Q = (UZVT)©Q with ¥ =diag(o; > -+ > 0, > 0),
U=[u, -, u]eR""and V = [vy, ---, v,] € R™*",
n = min(ny, ny) satisfying
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Extended Singular Value Decomposition

@ Recall that the SVD of A is given by A = UX V7 such that

Y =diag(oy >+ >0,>0),U=uy, ---, u,] € R""*" and
V=I[vi, -+, vu) € R™*", n = min(ny, ny) satisfying

Q U'u=1,.

Q Viv=l,

Q (uv/jwvf) =4y 1<ij<n
@ The Extended-SVD of A given the set of revealed entries Q is
given by A©Q = (UXVT)©Q with ¥ =diag(o; > --- > 0, > 0),

U=[u, -, u]eR""and V = [vy, ---, v,] € R™*",
n = min(ny, ny) satisfying
0 UTU = diag(ﬁ/lv Ty Fyn)
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Extended Singular Value Decomposition

@ Recall that the SVD of A is given by A = UX V7 such that

Y =diag(oy >+ >0,>0),U=uy, ---, u,] € R""*" and
V=I[vi, -+, vu) € R™*", n = min(ny, ny) satisfying

Q U'u=1,.

Q Viv=l,

Q (uv/jwvf) =4y 1<ij<n
@ The Extended-SVD of A given the set of revealed entries Q is
given by A©Q = (UXVT)©Q with ¥ =diag(o; > --- > 0, > 0),

U=[u, -, u]eR""and V = [vy, ---, v,] € R™*",
n = min(ny, ny) satisfying

0 UTU = diag(ﬁ/lv Ty Fyn)

Q Viv=1l,.

Q (v |uv))o =6y, 1 <ij<n.
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Performance of the proposed initialization

Recall the matrix completion problem

(P,)_min [A-X|}
XeRannz

s.t. Rank(X) =r.
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Performance of the proposed initialization

Recall the matrix completion problem
(P,)_min ||A-X]|[}
XeRnl ><n2
s.t. Rank(X) =r.

Theorem

A sufficient condition for the output X, after r iterations to serve as a
good initialization to (P,), in the sense that it is closer in the Frobenius
norm to the optimal solution than the all zeros matrix, is:

(1-a)llA - UL, VT]lg < VI +o?|[Allg-

where U, %,V is the truncated E-SVD of A, and o = /52, with p
being the probability that an entry is revealed.

Douik and Hassibi - An Improved Initialization for Matrix Completion ICASSP’18 - Calgary, Alberta, Canada, 15-20 Apr. ~ 13/21



Performance of the proposed initialization
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How to deal with local minima?

@ Being close to the optimal is good but not sufficient.
@ Presence of local minima in the search space.

@ Use multiple norms, denoted by W, derived from the Q-norm to
randomize the location of local minima while preserving the
position of the global one.

Douik and Hassibi - An Improved Initialization for Matrix Completion ICASSP’18 - Calgary, Alberta, Canada, 15-20 Apr. ~ 15/21



How to deal with local minima?

@ Being close to the optimal is good but not sufficient.
@ Presence of local minima in the search space.

@ Use multiple norms, denoted by W, derived from the Q-norm to
randomize the location of local minima while preserving the
position of the global one.

In other words, for positive and random W;;’s, we solve the problem

(Pr) min_ 1A - X[ = > WilAy —Xy)’
© (if)eQ

s.t. Rank(X)=r.
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Landscape change with W
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Figure: Effect of the random norm Ww.
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Performance of the proposed method
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Much faster convergence
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Figure: Speed of convergence for
n =50 and r = 29.

@ Impressive convergence
region.

@ Very close to the information
theoretical bound.

@ Highly efficient use of the
computation resources.
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Much faster convergence
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Conclusion

@ This work propose an efficient method, with theoretical
guarantees, to find an improved initialization to the matrix
completion problem.

@ To mitigate the effect of the local minima, a new class of norms is
introduced to random the location of local minima.

@ Simulation results shows a two-fold improvement:

@ Larger convergence region.
@ Better convergence speed.

@ Extension of the work to an online setting is of high interest to

industry.

Douik and Hassibi - An Improved Initialization for Matrix Completion ICASSP’18 - Calgary, Alberta, Canada, 15-20 Apr. 20/ 21



THANK YOU

For more questions, please email

ahmed.douik@caltech.edu
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