IEEE International Conf. on Acoustics, Speech and Signal Processing

California Institute of Technology, (Caltech), California, USA

ICASSP'18-Calgary, Alberta, Canada, 15-20 Apr. 2018

An Improved Initialization for Low-Rank Matrix Completion Based on Rank-1 Updates

Ahmed Douik and Babak Hassibi \{ahmed.douik,hassibi\}@caltech.edu

Presented by Christos Thrampoulidis, Massachusetts Institute of Technology.
April 19, 2018

Why matrix completion? Global positioning

Figure: Graph with partially observable distance.

Why matrix completion? Global positioning

- Find X such that

$$
\left[\begin{array}{cccc}
0 & 1 & 7 & X \\
1 & 0 & X & 5 \\
7 & X & 0 & 3 \\
X & 5 & 3 & 0
\end{array}\right]
$$

Figure: Graph with partially observable distance.
has low-rank.

Why matrix completion? Netflix problem

NETFLIX

Figure: Netflix recommendation system.

Mathematical formulation

- Let \mathbf{A} be the partially observable matrix and Ω be the set of observable indices.
- The matrix completion problem can be written as:

$$
\begin{aligned}
& \min _{\mathbf{X} \in \mathbb{R}^{n_{1} \times n_{2}}} \operatorname{Rank}(\mathbf{X}) \\
& \text { s.t. } \quad \mathbf{X}_{i j}=\mathbf{A}_{i j}, \forall(i, j) \in \Omega .
\end{aligned}
$$

${ }^{1}$ Rong Ge, Jason D. Lee, and Tengyu Ma "Matrix Completion has No Spurious Local Minimum" in Neural Information Processing Systems (NIPS), 2016.

Mathematical formulation

- Let \mathbf{A} be the partially observable matrix and Ω be the set of observable indices.
- The matrix completion problem can be written as:

$$
\begin{aligned}
& \min _{\mathbf{X} \in \mathbb{R}^{n_{1} \times n_{2}}} \operatorname{Rank}(\mathbf{X}) \\
& \text { s.t. } \quad \mathbf{X}_{i j}=\mathbf{A}_{i j}, \forall(i, j) \in \Omega .
\end{aligned}
$$

- Unless under specific scenarios ${ }^{1}$, the matrix completion problem is non-convex with the presence of local minima.

[^0]
Assumptions

In the rest of this talk, we assume the following

- The partially observed matrix \mathbf{A} is generated from the multiplication of two i.i.d. Gaussian matrices with zero mean and unit variance, i.e., $\mathbf{A}=\mathbf{U} \mathbf{V}^{T}$ with $\mathbf{U} \in \mathbb{R}^{n_{1} \times r}$ and $\mathbf{V} \in \mathbb{R}^{n_{2} \times r}$ i.i.d. $\mathcal{N}(0,1)$.
- The set Ω is sampled according to a Bernoulli model. In other words, each entry (i, j) with $1 \leq i \leq n_{1}$ and $1 \leq j \leq n_{2}$ is included in the set Ω with probability p.
- The completion rank r is known apriori.

Related Work and Results

	Convex Relaxation	Non-convex Approach				
Objective	$\min _{\mathbf{X} \in \mathbb{R}^{n_{1} \times n_{2}}}\\|\mathbf{X}\\|_{*}^{2}$	$\min _{\mathbf{X} \in \mathbb{R}^{n_{1} \times n_{2}}}\\|\mathbf{A}-\mathbf{X}\\|_{\Omega}^{2}$				
Constraint	$\mathbf{X} \odot \Omega=\mathbf{A} \odot \Omega$	$\operatorname{Rank}(\mathbf{X})=r$				
Dimension	$n_{1} n_{2}$	$\left(n_{1}+n_{2}\right) r$				
Algorithm(s)	SDP 2	Riemannian optimization Alternate projection				
Guarantees		\boldsymbol{X}				

[^1]
Is the convex approximation good?

Figure: Performance of the nuclear norm relaxation.

Is the convex approximation good?

Drawbacks:

- Only works for low-rank,
- Very slow because large SDP.

Figure: Performance of the nuclear norm relaxation.

Performance of the Riemannian approach

Figure: Performance of the nuclear norm relaxation.

Figure: Riemannian approach with arbitrary initialization.

Pros and cons of the Riemannian approach

Advantages:

- Large convergence region,
- Very fast as compared to solving SDPs.
Drawbacks:
- No convergence theoretical guarantees,
- Performance sensitive to initialization.

Figure: Riemannian approach with arbitrary initialization.

Matrix completion as norm minimization

- The matrix completion problem can be reformulated as:

$$
\begin{aligned}
& \left(\mathbf{P}_{r}\right) \min _{\mathbf{X} \in \mathbb{R}^{\mathfrak{n}_{1} \times n_{2}}}\|\mathbf{A}-\mathbf{X}\|_{\Omega}^{2}=\sum_{(i, j) \in \Omega}\left(\mathbf{A}_{i j}-\mathbf{X}_{i j}\right)^{2} \\
& \text { s.t. } \operatorname{Rank}(\mathbf{X})=r .
\end{aligned}
$$

Matrix completion as norm minimization

- The matrix completion problem can be reformulated as:

$$
\begin{aligned}
&\left(\mathbf{P}_{r}\right) \min _{\mathbf{X} \in \mathbb{R}^{n_{1} \times n_{2}}}\|\mathbf{A}-\mathbf{X}\|_{\Omega}^{2}=\sum_{(i, j) \in \Omega}\left(\mathbf{A}_{i j}-\mathbf{X}_{i j}\right)^{2} \\
& \text { s.t. } \operatorname{Rank}(\mathbf{X})=r .
\end{aligned}
$$

- However, as expected the problem still hard and requires a good initialization.

Successive rank one update

- Starting with $\mathbf{X}_{0}^{*}=\mathbf{0}$, we propose a successive rank one update initialization as follows

$$
\begin{aligned}
\mathbf{X}_{n+1}^{*}=\arg & \min _{\mathbf{x} \in \mathbb{R}^{n_{1} \times n_{2}}}
\end{aligned} \quad\|\mathbf{A}-\mathbf{X}\|_{\Omega}^{2}, ~ \begin{aligned}
\text { s.t. } \quad & \mathbf{X}=\mathbf{X}_{n}+\mathbf{x y}^{T} \\
& \mathbf{x} \in \mathbb{R}^{n_{1}}, \mathbf{y} \in \mathbb{R}^{n_{2}}
\end{aligned}
$$

- The above problem is solved using the Riemannian ${ }^{5}$ method on the low-rank manifold.
- The algorithm is executed r times to produce a rank r initialization.

[^2]
Are we close to the optimal solution?

- The performance of the initialization is difficult to characterize.
- However, a sufficient condition is given extending the SVD.
- The extended SVD (E-SVD), like the SVD, can be computed efficiently (n^{4} operations as compared to n^{3} for the SVD).

Extended Singular Value Decomposition

- Recall that the SVD of \mathbf{A} is given by $\mathbf{A}=\mathbf{U} \Sigma \mathbf{V}^{T}$ such that $\Sigma=\operatorname{diag}\left(\sigma_{1} \geq \cdots \geq \sigma_{n} \geq 0\right), \mathbf{U}=\left[\mathbf{u}_{1}, \cdots, \mathbf{u}_{n}\right] \in \mathbb{R}^{n_{1} \times n}$ and $\mathbf{V}=\left[\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}\right] \in \mathbb{R}^{n_{2} \times n}, n=\min \left(n_{1}, n_{2}\right)$ satisfying
(1) $\mathbf{U}^{T} \mathbf{U}=\mathbf{I}_{n}$.
(2) $\mathbf{V}^{T} \mathbf{V}=\mathbf{I}_{n}$.

Extended Singular Value Decomposition

- Recall that the SVD of \mathbf{A} is given by $\mathbf{A}=\mathbf{U} \Sigma \mathbf{V}^{T}$ such that $\Sigma=\operatorname{diag}\left(\sigma_{1} \geq \cdots \geq \sigma_{n} \geq 0\right), \mathbf{U}=\left[\mathbf{u}_{1}, \cdots, \mathbf{u}_{n}\right] \in \mathbb{R}^{n_{1} \times n}$ and $\mathbf{V}=\left[\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}\right] \in \mathbb{R}^{n_{2} \times n}, n=\min \left(n_{1}, n_{2}\right)$ satisfying
(1) $\mathbf{U}^{T} \mathbf{U}=\mathbf{I}_{n}$.
(2) $\mathbf{V}^{T} \mathbf{V}=\mathbf{I}_{n}$.
(8) $\left\langle\mathbf{u}_{i} \mathbf{v}_{i}^{T} \mid \mathbf{u}_{j} \mathbf{v}_{j}^{T}\right\rangle=\delta_{i j}, 1 \leq i, j \leq n$

Extended Singular Value Decomposition

- Recall that the SVD of \mathbf{A} is given by $\mathbf{A}=\mathbf{U} \Sigma \mathbf{V}^{T}$ such that $\Sigma=\operatorname{diag}\left(\sigma_{1} \geq \cdots \geq \sigma_{n} \geq 0\right), \mathbf{U}=\left[\mathbf{u}_{1}, \cdots, \mathbf{u}_{n}\right] \in \mathbb{R}^{n_{1} \times n}$ and $\mathbf{V}=\left[\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}\right] \in \mathbb{R}^{n_{2} \times n}, n=\min \left(n_{1}, n_{2}\right)$ satisfying
(1) $\mathbf{U}^{T} \mathbf{U}=\mathbf{I}_{n}$.
(2) $\mathbf{V}^{T} \mathbf{V}=\mathbf{I}_{n}$.
(3) $\left\langle\mathbf{u}_{i} \mathbf{v}_{i}^{T} \mid \mathbf{u}_{j} \mathbf{v}_{j}^{T}\right\rangle=\delta_{i j}, 1 \leq i, j \leq n$
- The Extended-SVD of \mathbf{A} given the set of revealed entries Ω is given by $\mathbf{A} \odot \Omega=\left(\mathbf{U} \Sigma \mathbf{V}^{T}\right) \odot \Omega$ with $\Sigma=\operatorname{diag}\left(\sigma_{1} \geq \cdots \geq \sigma_{n} \geq 0\right)$, $\mathbf{U}=\left[\mathbf{u}_{1}, \cdots, \mathbf{u}_{n}\right] \in \mathbb{R}^{n_{1} \times n}$ and $\mathbf{V}=\left[\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}\right] \in \mathbb{R}^{n_{2} \times n}$, $n=\min \left(n_{1}, n_{2}\right)$ satisfying

Extended Singular Value Decomposition

- Recall that the SVD of \mathbf{A} is given by $\mathbf{A}=\mathbf{U} \Sigma \mathbf{V}^{T}$ such that $\Sigma=\operatorname{diag}\left(\sigma_{1} \geq \cdots \geq \sigma_{n} \geq 0\right), \mathbf{U}=\left[\mathbf{u}_{1}, \cdots, \mathbf{u}_{n}\right] \in \mathbb{R}^{n_{1} \times n}$ and $\mathbf{V}=\left[\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}\right] \in \mathbb{R}^{n_{2} \times n}, n=\min \left(n_{1}, n_{2}\right)$ satisfying
(1) $\mathbf{U}^{T} \mathbf{U}=\mathbf{I}_{n}$.
(2) $\mathbf{V}^{T} \mathbf{V}=\mathbf{I}_{n}$.
(3) $\left\langle\mathbf{u}_{i} \mathbf{v}_{i}^{T} \mid \mathbf{u}_{j} \mathbf{v}_{j}^{T}\right\rangle=\delta_{i j}, 1 \leq i, j \leq n$
- The Extended-SVD of \mathbf{A} given the set of revealed entries Ω is given by $\mathbf{A} \odot \Omega=\left(\mathbf{U} \Sigma \mathbf{V}^{T}\right) \odot \Omega$ with $\Sigma=\operatorname{diag}\left(\sigma_{1} \geq \cdots \geq \sigma_{n} \geq 0\right)$, $\mathbf{U}=\left[\mathbf{u}_{1}, \cdots, \mathbf{u}_{n}\right] \in \mathbb{R}^{n_{1} \times n}$ and $\mathbf{V}=\left[\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}\right] \in \mathbb{R}^{n_{2} \times n}$, $n=\min \left(n_{1}, n_{2}\right)$ satisfying
(1) $\mathbf{U}^{T} \mathbf{U}=\operatorname{diag}\left(\gamma_{1}, \cdots, \gamma_{n}\right)$.

Extended Singular Value Decomposition

- Recall that the SVD of \mathbf{A} is given by $\mathbf{A}=\mathbf{U} \Sigma \mathbf{V}^{T}$ such that $\Sigma=\operatorname{diag}\left(\sigma_{1} \geq \cdots \geq \sigma_{n} \geq 0\right), \mathbf{U}=\left[\mathbf{u}_{1}, \cdots, \mathbf{u}_{n}\right] \in \mathbb{R}^{n_{1} \times n}$ and $\mathbf{V}=\left[\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}\right] \in \mathbb{R}^{n_{2} \times n}, n=\min \left(n_{1}, n_{2}\right)$ satisfying
(1) $\mathbf{U}^{T} \mathbf{U}=\mathbf{I}_{n}$.
(2) $\mathbf{V}^{T} \mathbf{V}=\mathbf{I}_{n}$.
(8) $\left\langle\mathbf{u}_{i} \mathbf{v}_{i}^{T} \mid \mathbf{u}_{j} \mathbf{v}_{j}^{T}\right\rangle=\delta_{i j}, 1 \leq i, j \leq n$
- The Extended-SVD of A given the set of revealed entries Ω is given by $\mathbf{A} \odot \Omega=\left(\mathbf{U} \Sigma \mathbf{V}^{T}\right) \odot \Omega$ with $\Sigma=\operatorname{diag}\left(\sigma_{1} \geq \cdots \geq \sigma_{n} \geq 0\right)$, $\mathbf{U}=\left[\mathbf{u}_{1}, \cdots, \mathbf{u}_{n}\right] \in \mathbb{R}^{n_{1} \times n}$ and $\mathbf{V}=\left[\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}\right] \in \mathbb{R}^{n_{2} \times n}$, $n=\min \left(n_{1}, n_{2}\right)$ satisfying
(1) $\mathbf{U}^{T} \mathbf{U}=\operatorname{diag}\left(\gamma_{1}, \cdots, \gamma_{n}\right)$.
(2) $\mathbf{V}^{T} \mathbf{V}=\mathbf{I}_{n}$.

Extended Singular Value Decomposition

- Recall that the SVD of \mathbf{A} is given by $\mathbf{A}=\mathbf{U} \Sigma \mathbf{V}^{T}$ such that $\Sigma=\operatorname{diag}\left(\sigma_{1} \geq \cdots \geq \sigma_{n} \geq 0\right), \mathbf{U}=\left[\mathbf{u}_{1}, \cdots, \mathbf{u}_{n}\right] \in \mathbb{R}^{n_{1} \times n}$ and $\mathbf{V}=\left[\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}\right] \in \mathbb{R}^{n_{2} \times n}, n=\min \left(n_{1}, n_{2}\right)$ satisfying
(1) $\mathbf{U}^{T} \mathbf{U}=\mathbf{I}_{n}$.
(2) $\mathbf{V}^{T} \mathbf{V}=\mathbf{I}_{n}$.
(8) $\left\langle\mathbf{u}_{i} \mathbf{v}_{i}^{T} \mid \mathbf{u}_{j} \mathbf{v}_{j}^{T}\right\rangle=\delta_{i j}, 1 \leq i, j \leq n$
- The Extended-SVD of A given the set of revealed entries Ω is given by $\mathbf{A} \odot \Omega=\left(\mathbf{U} \Sigma \mathbf{V}^{T}\right) \odot \Omega$ with $\Sigma=\operatorname{diag}\left(\sigma_{1} \geq \cdots \geq \sigma_{n} \geq 0\right)$, $\mathbf{U}=\left[\mathbf{u}_{1}, \cdots, \mathbf{u}_{n}\right] \in \mathbb{R}^{n_{1} \times n}$ and $\mathbf{V}=\left[\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}\right] \in \mathbb{R}^{n_{2} \times n}$, $n=\min \left(n_{1}, n_{2}\right)$ satisfying
(1) $\mathbf{U}^{T} \mathbf{U}=\operatorname{diag}\left(\gamma_{1}, \cdots, \gamma_{n}\right)$.
(2) $\mathbf{V}^{T} \mathbf{V}=\mathbf{I}_{n}$.
(3) $\left\langle\mathbf{u}_{i} \mathbf{v}_{i}^{T} \mid \mathbf{u}_{j} \mathbf{v}_{j}^{T}\right\rangle_{\Omega}=\delta_{i j}, 1 \leq i, j \leq n$.

Performance of the proposed initialization

Recall the matrix completion problem

$$
\begin{aligned}
\left(\mathbf{P}_{r}\right) & \min _{\mathbf{X} \in \mathbb{R}^{n_{1} \times n_{2}}} \\
\text { s.t. } & \operatorname{Rank}(\mathbf{X})=r .
\end{aligned}
$$

Performance of the proposed initialization

Recall the matrix completion problem

$$
\begin{aligned}
&\left(\mathbf{P}_{r}\right) \min _{\mathbf{X} \in \mathbb{R}^{n_{1} \times n_{2}}}\|\mathbf{A}-\mathbf{X}\|_{\Omega}^{2} \\
& \text { s.t. } \quad \operatorname{Rank}(\mathbf{X})=r .
\end{aligned}
$$

Theorem

A sufficient condition for the output \mathbf{X}_{r} after r iterations to serve as a good initialization to $\left(\mathbf{P}_{r}\right)$, in the sense that it is closer in the Frobenius norm to the optimal solution than the all zeros matrix, is:

$$
(1-\alpha)\left\|\mathbf{A}-\mathbf{U}_{r} \Sigma_{r} \mathbf{V}_{r}^{T}\right\|_{\boldsymbol{\Omega}} \leq \sqrt{1+\alpha^{2}}\|\mathbf{A}\|_{\Omega}
$$

where $\mathbf{U}_{r} \Sigma_{r} \mathbf{V}_{r}^{T}$ is the truncated E-SVD of \mathbf{A}, and $\alpha=\sqrt{\frac{1-p}{p}}$, with p being the probability that an entry is revealed.

Performance of the proposed initialization

Figure: Region in which the sufficient condition of Theorem 1 is satisfied for a 20×20 matrix.

Figure: Region in which the initialization is close to the optimal solution for a 20×20 matrix.

How to deal with local minima?

- Being close to the optimal is good but not sufficient.
- Presence of local minima in the search space.
- Use multiple norms, denoted by Ψ, derived from the Ω-norm to randomize the location of local minima while preserving the position of the global one.

How to deal with local minima?

- Being close to the optimal is good but not sufficient.
- Presence of local minima in the search space.
- Use multiple norms, denoted by Ψ, derived from the Ω-norm to randomize the location of local minima while preserving the position of the global one.

In other words, for positive and random $\Psi_{i j}$'s, we solve the problem

$$
\begin{aligned}
&\left(\mathbf{P}_{r}\right) \min _{\mathbf{X} \in \mathbb{R}^{n_{1} \times n_{2}}}\|\mathbf{A}-\mathbf{X}\|_{\psi}^{2}=\sum_{(i, j) \in \Omega} \Psi_{i j}\left(\mathbf{A}_{i j}-\mathbf{X}_{i j}\right)^{2} \\
& \text { s.t. } \quad \operatorname{Rank}(\mathbf{X})=r .
\end{aligned}
$$

Landscape change with ψ

Figure: Effect of the random norm Ψ.

Performance of the proposed method

Figure: Riemannian approach with improved initialization.

Figure: Riemannian approach with arbitrary initialization.

Much faster convergence

Figure: Speed of convergence for $n=50$ and $r=29$.

- Impressive convergence region.
- Very close to the information theoretical bound.
- Highly efficient use of the computation resources.

Much faster convergence

Figure: Speed of convergence for $n=50$ and $r=33$.

- Impressive convergence region.
- Very close to the information theoretical bound.
- Highly efficient use of the computation resources.
- Solve previously impossible to solve configuration.

Conclusion

- This work propose an efficient method, with theoretical guarantees, to find an improved initialization to the matrix completion problem.
- To mitigate the effect of the local minima, a new class of norms is introduced to random the location of local minima.
- Simulation results shows a two-fold improvement:
(1) Larger convergence region.
(2) Better convergence speed.
- Extension of the work to an online setting is of high interest to industry.

Thank You

For more questions, please email ahmed.douik@caltech.edu

[^0]: ${ }^{1}$ Rong Ge, Jason D. Lee, and Tengyu Ma "Matrix Completion has No Spurious Local Minimum" in Neural Information Processing Systems (NIPS), 2016.

[^1]: ${ }^{2}$ Candès, E. J. and Terence, T. "The Power of Convex Relaxation: Near-optimal Matrix Completion" in IEEE Transactions on Information Theory, 2010.
 ${ }^{3}$ Bart, V. "Low-rank matrix completion by Riemannian optimization" in SIAM Journal on Optimization, 2013.
 ${ }^{4}$ Prateek, J. and Praneeth, N. and Sujay, S. "Low-rank matrix completion using alternating minimization" in proc. of ACM symposium on Theory of computing, 2013

[^2]: ${ }^{5}$ Bart, V. "Low-rank matrix completion by Riemannian optimization" in SIAM Journal on Optimization, 2013.

