CONTROL OF GRAPH SIGNALS OVER RANDOM TIME-VARYING GRAPHS

Fernando Gama[†], Elvin Isufi[‡], Geert Leus[‡] and Alejandro Ribeiro[†] E-mail: fgama@seas.upenn.edu [†]Dept. of Electrical & Systems Engineering, University of Pennsylvania [‡] Circuits and Systems Group, Delft University of Technology

Control of Graph Signals

- Graph Signal Processing (GSP)
 - \Rightarrow Process signals defined on nodes of a graph (graph signals) \Rightarrow Exploit information contained in the underlying graph structure
- Control graph signal diffusion \Rightarrow Drive signal to desired state
- Act only on a few relevant nodes \Rightarrow Control nodes \Rightarrow Sparse controllability of graph signals [Segarra '16, Barbarossa '16]
- **Random graphs** \Rightarrow Probability of link failure \Rightarrow Link or sensor failure in the grid, street closures

Objective

- Drive diffusion of graph signals to a desired state
 - \Rightarrow Act on a few preselected control nodes
 - \Rightarrow Design appropriate control signals
- Drive to a bandlimited state by means of bandlimited control signals
- Incorporate stochastic nature of underlying support
 - \Rightarrow Introduce concept of controllability in the mean
 - \Rightarrow Mean square error analysis

Graph signals

- Weighted graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}, \mathcal{W})$ with *n* nodes
- Graph signal $\mathbf{x} \in \mathbb{R}^n \Rightarrow$ Data value on each node
- Graph shift operator $\mathbf{S} \in \mathbb{R}^{n \times n} \Rightarrow$ Captures local structure in \mathcal{G}

		(S_{11}	S_{12}	0	0	S_{15}	0	
\mathbf{S}			S_{21}	S_{22}	S_{23}	0	S_{25}	$egin{array}{c} 0 \\ 0 \\ 0 \\ S_{46} \end{array}$	
			0	S_{23}	S_{33}	S_{34}	0	0	
	=		0	0	S_{43}	S_{44}	S_{45}	S_{46}	
			S_{51}	S_{52}	0	S_{54}	S_{55}	0	
			0	0	0	S_{64}	0	S_{66}	

- Interaction between signal and support \Rightarrow Sx local operation
- Focus on graph Laplacian S = L = D W (D: degree, W: adjacency)
- Graph Laplacian is symmetric and positive semidefinite \Rightarrow Orthogonal eigendecomposition of GSO $\mathbf{S} = \mathbf{L} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^{H}$ ▶ Project graph signal onto eigenbasis $\Rightarrow \tilde{\mathbf{x}} = \mathbf{V}^H \mathbf{x}$
- \Rightarrow Defined as the graph Fourier transform (GFT)
- Linear combination of eigenvectors weighted by GFT coefficients $\Rightarrow \mathbf{x} = \mathbf{V}\tilde{\mathbf{x}} \Rightarrow$ Inverse graph Fourier transfrom (iGFT)

SYNTHESIS

frequencies (dictionary atoms)

► Bandlimited graph signal $\Rightarrow \tilde{\mathbf{x}} = [\tilde{\mathbf{x}}_{K}^{\mathsf{T}}, \mathbf{0}_{N-K}^{\mathsf{T}}]^{\mathsf{T}}, \mathbf{V} = [\mathbf{V}_{K}, \mathbf{V}_{N-K}]$ \Rightarrow Sparse representation in the graph frequency domain

References

- S. Segarra et al., "Reconstruction of graph signals through percolation of seeding nodes," IEEE TSP, Aug. 2016.
- S. Barbarossa et al., "On sparse controllability of graph signals," *IEEE ICASSP*, March 2016.
- R. Varma et al., "Spectrum-blind signal recovery on graphs," *IEEE CAMSAP*, Dec. 2015.
- A. Anis et al., "Efficient sampling set selection for bandlimites graph signals using graph spectral proxies," IEEE TSP, July 2016.

ontrollability in the Mean	Setup of
Given the random edge sampling (RES) graph model	Grap
• Time-varying control system $\Rightarrow A_t$ depends on the changing topology	
$\mathbf{x}_{t+1} = \mathbf{A}_t \mathbf{x}_t + \operatorname{diag}(\mathbf{d})\mathbf{u}_t$	
\Rightarrow Selected nodes in d are constant for all <i>t</i>	⇒ ► Drive
Control the mean evolution of the system	► Аррі
\Rightarrow x _t depends on A _{\tau} for $ au = 0, \dots, t - 1 \Rightarrow$ Independent of A _t	⇒,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
$\boldsymbol{\mu}_{t+1} = \mathbb{E}[\mathbf{x}_{t+1}] = \mathbb{E}[\mathbf{A}_t]\mathbb{E}[\mathbf{x}_t] + \text{diag}(\mathbf{d})\mathbf{u}_t$	
$= \bar{\mathbf{A}} \mu_t + \operatorname{diag}(\mathbf{d}) \mathbf{u}_t$	
$\Rightarrow \text{Constant activation } \Rightarrow \bar{\mathbf{A}} = \mathbf{I} - \epsilon p_{act} \mathbf{L} \Rightarrow \bar{\mathbf{A}} = \mathbf{V} \text{diag}(\bar{\mathbf{a}}) \mathbf{V}^{H}$ $\Rightarrow \text{Mean evolution } \Rightarrow \text{Deterministic diffusion control system}$ $\Rightarrow \text{Drive the system in the frequency domain } \Rightarrow \tilde{\mu}_t = \mathbf{V}^{H} \mu_t$	⇒ ► Mea
$\Rightarrow \text{Focus on } K \text{ frequencies } \Rightarrow \tilde{\mu}_t = [\tilde{\mu}_{t,K}^{T}, \tilde{\mu}_{t,N-K}^{T}]^{T}$	Design \
$\tilde{\mu}_{t+1,K} = \operatorname{diag}(\bar{\mathbf{a}}_{K})\tilde{\mu}_{t,K} + \mathbf{V}_{K}^{H}\operatorname{diag}(\mathbf{d})\mathbf{V}_{K}\tilde{\mathbf{u}}_{t,K}$ • Drive the mean signal to a desired bandlimited signal $\tilde{\mathbf{x}}_{K}^{*} \Rightarrow \tilde{\mu}_{T,K} = \tilde{\mathbf{x}}_{K}^{*}$ $\Rightarrow \text{ Filter out the non-desired frequency content } \Rightarrow \mathbf{H}\mu_{T}$ $\Rightarrow \text{ Desired } K \text{ frequency content } in the mean$	► Fix e
ean Square Analysis	
Mean square analysis to study robustness of the adopted control	
Proposition	
Assume $\mathbf{x}_0 = 0$, then	
$\mathbb{E}\left[\ \mathbf{x}_{T} - \boldsymbol{\mu}_{T}\ ^{2}\right] \leq \sum_{\tau=0}^{T-1} \sum_{\tau'=0}^{T-1} \operatorname{tr}\left[\operatorname{diag}(\mathbf{d})\mathbf{u}_{\tau}\mathbf{u}_{\tau'}\right]$	► NMS
Bound depends on the design variables through d and \mathbf{u}_{τ}	
Define $\mathbf{U}_{K} = [\tilde{\mathbf{u}}_{0,K}, \dots, \tilde{\mathbf{u}}_{T-1,K}] \in \mathbb{C}^{K \times T}$ and 1_{T} is the all-one vector of size T . Then,	

- $\mathbb{E}\left[\|\mathbf{x}_{T} \boldsymbol{\mu}_{T}\|^{2}\right] \leq \|\mathbf{V}_{K}^{\mathsf{H}}\mathsf{diag}(\mathbf{d})\mathbf{V}_{K}\| \cdot \mathbf{1}_{T}^{\mathsf{T}}\mathbf{U}_{K}^{\mathsf{H}}\mathbf{U}_{K}\mathbf{1}_{T}\right]$
- Relates MSE with frequencies of control signals and node selection First term highlights the importance of selecting the frequency basis Second term reflects the impact of frequency content of control signals Role of statistics is explicit when controlling the mean system

Control Strategy

- Select subset S and design control signals $\mathbf{u}_t \Rightarrow$ Based on the statistics of the RES graph model
- Optimal strategy \Rightarrow Minimize the bound on the mean square error Selects precisely *M* nodes (fixed through time) \blacktriangleright Use δ to control the bias at time horizon 7

Strategy

Determine $S \subseteq V$ through **d** and control signals with frequency content $\{\tilde{\mathbf{u}}_{t,K}\}_{t=0}^{T-1}$ such that

> $\|\mathbf{V}_{K}^{\mathsf{H}}\mathsf{diag}(\mathbf{d})\mathbf{V}_{K}\|\cdot\mathbf{1}_{T}^{\mathsf{T}}\mathbf{U}_{K}^{\mathsf{H}}\mathbf{U}_{K}\mathbf{1}_{T}$ minimize **d**∈{0,1} $\mathbf{U}_{K} \in \mathbb{R}^{K \times 1}$ $\mathbf{d}^{\mathsf{T}}\mathbf{1}=M,$ subject to $\|\mathbb{E}[\mathbf{X}_{T}] - \boldsymbol{\mu}_{T}\| \leq \delta.$

Not convex on both d and u_t simultaneously \Rightarrow Convex in each one of them, regarding the other as fixed \blacktriangleright Suboptimal approach \Rightarrow Select nodes so that system is controllable

 \Rightarrow Then, optimize over **U**_k for selected nodes

of Numerical Experiments

- aph is a Stochastic Block Model (SBM) of N = 300 nodes
- \Rightarrow Four communities. 75 nodes each
- \Rightarrow Probability 0.9 of drawing edges within same community
- \Rightarrow Probability 0.4 of drawing edges within different communities
- ve signal to $\tilde{\mu}_{TK} = \mathbf{1}_K \Rightarrow \text{Set } K = \mathbf{10}$
- proaches for selecting node subset S
- \Rightarrow Greedy minimization of $\|\mathbf{V}_{\mathcal{K}}^{\mathsf{H}} \operatorname{diag}(\mathbf{d})\mathbf{V}_{\mathcal{K}}\|$
- \Rightarrow Random node selection
- \Rightarrow Select rows of V_K that maximize ∞ -norm (EDS) [Varma '15]
- \Rightarrow Spectral proxies (SP) method [Anis '16]

easure the normalized MSE (NMSE) w.r.t. mean control signal $\tilde{\mu}_{T}$

Variables

ISE drops as more nodes are controlled, especially for greedy

 \blacktriangleright NMSE drops as T increases \Rightarrow More time to control the signal

Random Graph Topology

▶ NMSE drops as $p_{act} \rightarrow 1 \Rightarrow$ Control signal designed for mean graph

Conclusions and future work

Controllability of graph signals diffused on random time-varying graphs \Rightarrow Controllability in the mean \Rightarrow Drive signal w.r.t. expected graph \blacktriangleright Desired state is a bandlimited signal \Rightarrow Bandlimited control signals Fixed subset of nodes throughout the control process \blacktriangleright MSE analysis \Rightarrow Optimization problem for control strategy