Watermarking and rank metric codes

Pascal LEFÈVRE, Philippe CARRÉ and Philippe GABORIT

<pascal.lefevre@univ-poitiers.fr>, <philippe.carre@univ-poitiers.fr>, <gaborit@unilim.fr>

Context

Robust digital image watermarking

1. Robust and invisible watermarking : resistance to various image processings (malicious or not) and imperceptible to users.

2. Robustness improved using the well known error correcting codes approach (3).

Rank metric codes (RMC)

Error correcting codes :

 \rightarrow Parameters : $[n, k, n - k + 1]_r$

 \rightarrow Matrix representation of codewords \rightarrow Rank distance instead of Hamming metric over $GF(2^m)$

 $\rightarrow d_{min} = \min_{x \in \mathcal{C}^*} w_R(x) = \min_{x \in \mathcal{C}^*} Rank(x)$ **Examples in practice** : e = x' - x

LQIM + RMC vs luminance

Embedding strategy : LQIM payload is a rank metric codeword. Luminance attack model :

> $z = y + \beta \times (1, \dots, 1)$ (1)

For every z, distortions are constant.

Multi-detection and results

BER/IER curves are perdiodic and equation 1 is *almost* invertible. **Controlled distortions** : $z + \delta$ with $\delta = 0, 2, 4$

$$e = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

 $w_H(e) = 4$, rk(e) = 2: both codes

 $e = \left(\begin{array}{rrrrr} 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{array}\right)$

 $w_H(e) = 10$, rk(e) = 3: no correction

 $e = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \end{bmatrix}$

 $w_H(e) = 9$, rk(e) = 1: rank metric only

Lattice QIM (LQIM) (2)

Rank metric codes handle errors when the binary payload is reversed (BER = 1 and IER = 0) except when errors are random (BER = 0.5).

Error structure :

Three distortions states : \rightarrow BER = 0 : no error or binary inversion \rightarrow BER = 0.5 : random errors

Conclusion

• Rank metric codes introduced in watermarking.

Quantization space in 2D : embedding of bit m in host vector x into y_m .

\rightarrow BER = 1 : binary inversion

References

- (1) Gabidulin, Ernest Mukhamedovich Theory of codes with maximum rank distance Problemy Peredachi Informatsii 1985
- (2) Brian Chen and Gregory W. Wornell Quantization Index Modulation: A Class of Provably Good Methods for Digital Watermarking and Information Embedding IEEE TRANS. ON IN-FORMATION THEORY 1999
- (3) Error correcting codes for robust color wavelet watermarking - Abdul, Wadood and Carré, Philippe and Gaborit, Philippe EURASIP Journal on Information Security 2013

- Hamming codes are inefficient against luminance modifications.
- Rank metric codes are optimal for this error structure.
- Theoretical invariance against luminance modifications.

Perspectives

- Image cropping and collage attack are serious leads.
- Treillis coded quantization ?