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Abstract

We extend the classical joint problem of signal demixing, blind deconvo-
lution, and filter identification to the realm of graphs. The model is that
each mixing signal is generated by a sparse input diffused via a graph fil-
ter. Then, the sum of diffused signals is observed. We identify and address
two problems: 1) each sparse input is diffused in a different graph; and 2)
all signals are diffused in the same graph. These tasks amount to finding
the collections of sources and filter coefficients producing the observation.

Graph signal processing - 101

I Graph G = (V , E): encode pairwise relationships
I Interest is not in G itself, but in data associated with nodes in V
I Ex: Opinion profile, buffer congestion, neural activity, epidemic
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I Graph SP: broaden SP to graph signals, well suited to netw. process.

Graph signals and graph-shift operator

I Graph signals vector x ∈ RN (with |V| = N)

I Graph G is endowed with a graph-shift operator S
⇒ Matrix S ∈ RN×N satisfying: Sij = 0 for i 6= j and (i , j) 6∈ E

S captures local
structure in G

I Ex: Adjacency A, Degree D and Laplacian L

Locality of S and frequency-domain representation

I S is a local linear operator⇒ If y = Sx, yi =
∑

j∈N+
i

Sijxj ⇒ 1-hop info

I Spectrum of S useful to analyze x⇒ diagonalizable S = VΛV−1

I Leverage S to define graph Fourier transform (GFT) and iGFT

x̃ = V−1x, x = Vx̃ (Ex: DFT, PCA)

I Key message: the two basic elements of GSP are x and S

Linear (shift-invariant) graph filter

I With coeff. h = [h0, . . . ,hL]T , then H is a graph filter if

H := h0S0 + h1S1 + . . . + hLSL =
L∑

l=0

hlSl

I Key properties: H diagonalized by V, distr. (L-hop) implementation

I If y = Hx, then ỹ = diag(h̃)x̃, with the frequency response being

h̃ = Ψh, where Ψ :=

 1 λ1 . . . λL
1... ... ...

1 λN . . . λL
N



Diffused sparse graph signals

I Q: Upon observing a graph signal y, how was this signal generated?

I Postulate the following generative model
⇒ An originally sparse signal x = x(0)

⇒ Diffused via linear graph dynamics S ⇒ x(l) = Sx(l−1)

⇒ Observed y is a linear combination of the diffused signals x(l)

y =
L∑

l=0

hlx(l) =
L∑

l=0

hlSlx = Hx

I View few elements in supp(x) =: {i : xi 6= 0} as sources or seeds

Observed Unobserved 

Graph Filter 

y x 

Classical blind demixing

I Unknown signals xp and filters hp [Ling-Strohmer17]

y =
P∑

p=1

xp ∗ hp

⇒ Only one observation available
⇒ Mixture of blind deconvolutions”

I Undetermined without further assumptions
⇒ Probabilistic priors, subspace models

I Natural model of multi-sensor, single-receiver
I Many practical applications

⇒ E.g.: neuroscience, spectroscopy, astronomy

Graph blind demixing formulation

I Q: Can we determine the signals {xp}P
p=1 and filters {hp}P

p=1 from
y =

∑P
p=1 Hpxp?

I Problem: Blind identification of graph filters with sparse inputs
⇒ Generalizes classical blind demixing to graphs

I Ill-posed ⇒ N P +
∑P

p=1(Lp + 1) unknowns and N observations
⇒ Assume xp is Qp-sparse i.e., ‖xp‖0 := |supp(xp)| = Qp

I We address two different setups:
⇒ Multi-graph: Hp =

∑Lp
l=0 hp,lSp

l

⇒ Single-graph: Hp =
∑Lp

l=0 hp,lSl

“Lifting” the bilinear inverse problem

I Leverage the frequency response of graph filters
⇒ Let Up := V−1

p and yp = Hpxp:

yp = Vpdiag(Ψphp)Upxp

⇒ yp is a bilinear function of hp and xp

I Multi-graph blind demixing ⇒ Non-convex feasibility problem

find {xp,hp,yp}P
p=1 s. to yp = Vpdiag(Ψphp)Upxp, y =

P∑
p=1

yp, ‖xp‖0 ≤ Qp

I Key observation: Using the Khatri-Rao product �, rewrite yp [Segarra17]

yp = Vp

(
ΨT

p � UT
p

)T
vec(xphT

p ) = Mpvec(xphT
p )

⇒ Reveals yp is a linear combination of the entries of Zp := xphp
T

I Matrices Zp are rank-1 and row-sparse

find {Zp}P
p=1 s. to y =

P∑
p=1

Mpvec
(
Zp
)
, rank(Zp) = 1, ‖Zp‖2,0 ≤ Qp

⇒ Pseudo-norm ‖Zp‖2,0 counts the non-zero rows of Zp

Algorithmic approach via convex relaxation

I Rank minimization s. to row-cardinality constraints is NP-hard. Relax!
⇒ Nuclear norm ‖Zp‖∗ :=

∑
k σk(Zp) a convex proxy of rank

⇒ `2,1 mixed norm ‖Zp‖2,1 :=
∑N

n=1 ‖zT
p,n‖2 surrogate of ‖Zp‖2,0

I Convex relaxation

min{Zp}P
p=1

P∑
p=1

ηp‖Zp‖∗ +
P∑

p=1

βp‖Zp‖2,1 s.to y =
P∑

p=1

Mpvec (Zp)

I More sophisticated relaxations [Ramirez17]

⇒ Sparse reconstruction with iterative-reweighed optimization
⇒ Semidefinite embedding lemma

Single-graph demixing

I More challenging case than multi-graph

I Generally non-identifiable, only Z = ΣpZp

⇒ Argument in the paper
I We propose a two-step approach

1. Find Z∗ – rank(Zp) ≥ 1 “multi-graph” demixing with P = 1
2. SVD Z∗ for {Z∗}P

p=1 with orthogonal inputs and filters

Summary of additional aspects

I If only few samples of the observation are available, introduce sampling
matrices

I Robust demixing: relax the equality constraint in the presence of noise
I Prior information

⇒ Probabilistic distributions in the objective
⇒ Deterministic knowledge in terms of constraints. E.g:

1. {h}P
p=1 known removes bilinearity

2. Known values of xp ⇒ row-equality constraints

Demixing in random graphs

I Recovery rates on Erdős-Rényi graphs (N = 50) for varying P and Q
({Qp = Q,Pp = P}P

p=1), L = 2
I single-graph (left), two coupled graphs (right)
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I Left: (P = 3,Q = 3) harder than (P = 2,Q = 6)⇒ Q is critical

I Right: two coupled graphs (α = 1 equal, α = 0 random)
⇒ Recovery is maintained for large coupling: α ≈ 0.7
⇒ Topology is central!

Demixing in brain graphs

I Graphs (N = 66) representing the brain anatomy of several individuals
[Hagmann08]
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I Feasible demixing even for real-world graphs
⇒ Expected performance decay for increasing P and Q

Discussion and road ahead

I Identifiability conditions
⇒ Q: When is {xp,hp}P

p=1 the unique solution (up to scaling)?
⇒ Deterministic or probabilistic model assumptions

I Exact recovery conditions
⇒ Q: When does the convex relaxation succeed? Hypotheses:
⇒ Lower bound on N to guarantee recovery for given P and Q
⇒ Dependence on algebraic features of the graph-shift S
⇒ Some graph topologies are more amenable

I Envisioned application domains
⇒ Opinion formation in social networks
⇒ Event-driven information cascades
⇒ Identify sources of abnormal brain activity
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