DEMIXING AND BLIND DECONVOLUTION OF GRAPH-DIFFUSED SPARSE SIGNALS

Fernando J. Iglesias[†], Santiago Segarra[‡], Samuel Rey-Escudero[†], Antonio G. Marques[†], David Ramirez^{*} *Signal Theory & Communications, Carlos III University of Madrid †Signal Theory & Communications, King Juan Carlos University [‡]Institute for Data, Systems and Society, Massachusetts Institute of Technology

Abstract

We extend the classical joint problem of signal demixing, blind deconvolution, and filter identification to the realm of graphs. The model is that each mixing signal is generated by a sparse input diffused via a graph filter. Then, the sum of diffused signals is observed. We identify and address two problems: 1) each sparse input is diffused in a different graph; and 2) all signals are diffused in the same graph. These tasks amount to finding the collections of sources and filter coefficients producing the observation.

Graph signal processing - 101

- Graph $G = (\mathcal{V}, \mathcal{E})$: encode pairwise relationships
- \blacktriangleright Interest is not in G itself, but in data associated with nodes in \mathcal{V}
- **Ex:** Opinion profile, buffer congestion, neural activity, epidemic

	$\begin{bmatrix} x_1 \end{bmatrix}$		[0.6]
_	:	=	:
	$x_{ \mathcal{V} }$		0.7

Graph SP: broaden SP to graph signals, well suited to netw. process.

Graph signals and graph-shift operator

- Graph signals vector $\mathbf{x} \in \mathbb{R}^N$ (with $|\mathcal{V}| = N$)
- Graph G is endowed with a graph-shift operator S \Rightarrow Matrix $\mathbf{S} \in \mathbb{R}^{N \times N}$ satisfying: $S_{ii} = 0$ for $i \neq j$ and $(i, j) \notin \mathcal{E}$

3-4
2-5

	(S_{11})	S_{12}	0	0	S_{15}	$0 \rangle$	
=	S_{21}	S_{22}	S_{23}	0	S_{25}	0	
	0	S_{23}	S_{33}	S_{34}	0	0	
	0	0	S_{43}	S_{44}	S_{45}	S_{46}	
	S_{51}	S_{52}	0	S_{54}	S_{55}	0	
	0	0	0	S_{64}	0	S_{66} /	

S captures local structure in G

Ex: Adjacency A, Degree D and Laplacian L

Locality of S and frequency-domain representation

- ► S is a local linear operator \Rightarrow If $\mathbf{y} = \mathbf{S}\mathbf{x}$, $y_i = \sum_{j \in \mathcal{N}_i^+} S_{ij} x_j \Rightarrow 1$ -hop info
- Spectrum of **S** useful to analyze $\mathbf{x} \Rightarrow$ diagonalizable $\mathbf{S} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^{-1}$
- Leverage S to define graph Fourier transform (GFT) and iGFT
 - $\tilde{\mathbf{x}} = \mathbf{V}^{-1}\mathbf{x}, \qquad \mathbf{x} = \mathbf{V}\tilde{\mathbf{x}}$ (Ex: DFT, PCA)
- ► Key message: the two basic elements of GSP are x and S

Linear (shift-invariant) graph filter

▶ With coeff. $\mathbf{h} = [h_0, \ldots, h_L]^T$, then **H** is a graph filter if

$$\mathsf{H}:=h_0\mathsf{S}^0+h_1\mathsf{S}^1+\ldots+h_L\mathsf{S}^L=\sum_{l=0}^Lh_l\mathsf{S}^l$$

- ► Key properties: H diagonalized by V, distr. (L-hop) implementation
- ► If $\mathbf{y} = \mathbf{H}\mathbf{x}$, then $\tilde{\mathbf{y}} = diag(\tilde{\mathbf{h}})\tilde{\mathbf{x}}$, with the frequency response being

$$\tilde{\mathbf{h}} = \mathbf{\Psi}\mathbf{h}, \text{ where } \mathbf{\Psi} := \begin{pmatrix} 1 & \lambda_1 & \dots & \lambda_1^L \\ \vdots & \vdots & & \vdots \\ 1 & \lambda_N & \dots & \lambda_N^L \end{pmatrix}$$

- - \Rightarrow Multi-graph: $\mathbf{H}_{\rho} = \sum_{l=0}^{L_{\rho}} h_{\rho,l} \mathbf{S}_{\rho}^{l}$
 - \Rightarrow Single-graph: $\mathbf{H}_{p} = \sum_{l=0}^{L_{p}} h_{p,l} \mathbf{S}^{l}$

- 1. $\{\mathbf{h}\}_{p=1}^{P}$ known removes bilinearity
- 2. Known values of $\mathbf{x}_{\rho} \Rightarrow$ row-equality constraints

Universidad Rey Juan Carlos

Demixing in random graphs

Recovery rates on Erdős-Rényi graphs (N = 50) for varying P and Q $(\{Q_p = Q, P_p = P\}_{p=1}^{P}), L = 2$ single-graph (left), two coupled graphs (right)

▶ Left: (P = 3, Q = 3) harder than $(P = 2, Q = 6) \Rightarrow Q$ is critical ▶ Right: two coupled graphs ($\alpha = 1$ equal, $\alpha = 0$ random) \Rightarrow Recovery is maintained for large coupling: $\alpha \approx 0.7$ \Rightarrow Topology is central!

Demixing in brain graphs

• Graphs (N = 66) representing the brain anatomy of several individuals

Feasible demixing even for real-world graphs \Rightarrow Expected performance decay for increasing *P* and *Q*

Discussion and road ahead

- Identifiability conditions
 - \Rightarrow Q: When is $\{\mathbf{x}_{p}, \mathbf{h}_{p}\}_{p=1}^{P}$ the unique solution (up to scaling)? \Rightarrow Deterministic or probabilistic model assumptions
- Exact recovery conditions
 - \Rightarrow Q: When does the convex relaxation succeed? Hypotheses:
 - \Rightarrow Lower bound on N to guarantee recovery for given P and Q
 - \Rightarrow Dependence on algebraic features of the graph-shift S
 - \Rightarrow Some graph topologies are more amenable

Envisioned application domains

- \Rightarrow Opinion formation in social networks
- \Rightarrow Event-driven information cascades
- \Rightarrow Identify sources of abnormal brain activity

- S. Ling and T. Strohmer, "Blind deconvolution meets blind demixing: algorithms and performance bounds," IEEE Trans. Information Theory, vol. 67, no. 7, pp. 4497–4520, 2017.
- S. Segarra, G. Mateos, A. G. Marques and A. Ribeiro, "Blind identification of graph filters," *IEEE Trans. Signal Processing*, vol. 65, no. 5, pp. 1146–1159, 2017.
- D. Ramirez, A. G. Marques and S. Segarra, "Graph-signal reconstruction and blind deconvolution for diffused sparse inputs," IEEE Int. Conf. Acoustics, Speech and Signal Processing, Mar. 2017.
- P. Hagmann, et al., "Mapping the structural core of human cerebral cortex," *PLoS Biol*, vol. 6, no. 7, pp. e159, 2008.