DEMIXING AND BLIND DECONVOLUTION OF GRAPH-DIFFUSED SPARSE SIGNALS
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Abstract

We extend the classical joint problem of signal demixing, blind deconvo-
lution, and filter identification to the realm of graphs. The model is that
each mixing signal is generated by a sparse input diffused via a graph fil-
ter. Then, the sum of diffused signals is observed. We identify and address
two problems: 1) each sparse input is diffused in a different graph; and 2)
all signals are diffused in the same graph. These tasks amount to finding
the collections of sources and filter coefficients producing the observation.

Graph signal processing - 101

» Graph G = (V, £): encode pairwise relationships
» Interest is not in G itself, but in data associated with nodes in V
» Ex: Opinion profile, buffer congestion, neural activity, epidemic

» Graph SP: broaden SP to graph signals, well suited to netw. process.

Graph signals and graph-shift operator

» Graph signals vector x € RV (with |[V| = N)

» Graph G is endowed with a graph-shift operator S
= Matrix S € RV*N satisfying: Sj =0for i # jand (i,j) ¢ £
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» Ex: Adjacency A, Degree D and Laplacian L

Locality of S and frequency-domain representation

> Sis alocal linear operator = If y = SX, y; = > . \+ SjjX; = 1-hop info

» Spectrum of S useful to analyze x = diagonalizable S = VAV~
» Leverage S to define graph Fourier transform (GFT) and iGFT

X =V 'x, X = VX

> the two basic elements of GSP are x and S

Linear (shift-invariant) graph filter

» With coeff. h = [hg, ..., h]", then H is a graph filter if

L
H:= hoSO—I—I’HS1 —l—...—l—hLSL: Zh/S’
=0

> H diagonalized by V, distr. (L-hop) implementation
» If y = Hx, then § = diag(h)%, with the frequency response being
,, IPTSY:
h = Wh, where W =
1oy ... ok

Diffused sparse graph signals

» Q: Upon observing a graph signal y, how was this signal generated?

» Postulate the following generative model
= An originally sparse signal x = x(©)
= via linear graph dynamics S = x{) = Sx{~1)
— Observed y is a linear combination of the diffused signals x(/)

L L
y = Z hx) = Z hS'x = Hx
I—0 I~0

» View few elements in supp(x) =: {i : x; # 0} as sources or seeds
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Classical blind demixing

» Unknown signals x, and filters h, [Ling-Strohmer17]

P
y:pr*h/O
p=1

=- Only one observation available
= Mixture of blind deconvolutions”

» Undetermined without further assumptions
= Probabilistic priors, subspace models

» Natural model of
» Many practical applications
= E.Q.: neuroscience, spectroscopy, astronomy

Graph blind demixing formulation

> Q: Can we determine the signals {x,}, ; and filters {h,}__, from
y= 2521 HpX,?
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» Problem: Blind identification of graph filters with sparse inputs
=- (Generalizes classical blind demixing to graphs

» lll-posed = unknowns and N observations
= Assume X, is Q,-sparse i.e., || Xp|lo := |supp(Xp)| = Qp

» We address two different setups:
= Multi-graph:  H, = Z,LQO hp./Sp’
= Single-graph: H, = ,Lﬁo hp,/S’

“Lifting” the bilinear inverse problem

» Leverage the frequency response of graph filters
= LetU, :=V, " and y, = Hyx,:

Yp = Vpdiag(Wphp)UpX,
= Y, Is a bilinear function of h, and x,
» Multi-graph blind demixing = Non-convex feasibility problem

P
find  {Xp,hp,Yp}p_1 S 10y, = Vpdiag(Wphp)Upxp, y = Zypa IXpllo < Qp

p=1
> Using the Khatri-Rao product ©, rewrite y,, [Segarra17]
Yp = vec(xph]) = M vec(xph])

= Reveals y, is a linear combination of the entries of Z,, := x,h,"

» Matrices Z,, are rank-1 and row-sparse

P
find {Zp},_ s.toy=) Myvec(Z), rank(Z,) =1, ||Zy]l20 < Qp
p=1
= Pseudo-norm ||Z,||2 0 counts the non-zero rows of Z,

Algorithmic approach via convex relaxation

» Rank minimization s. to row-cardinality constraints is NP-hard.
= Nuclear norm ||Z,||. := >, ok(Z,) @ convex proxy of rank

= (2.1 mixed norm ||Zp||2,1 := S 2] 2 surrogate of [|Z,|2,

» Convex relaxation
P P P
mingz e Z 1pllZpl|+ + Z BollZpll21 s.to Y = Z Mpvec (Z,)
p=1 p=1 p=1

» More sophisticated relaxations [Ramirez17]
=- Sparse reconstruction with iterative-reweighed optimization
= Semidefinite embedding lemma

Single-graph demixing

» More challenging case than multi-graph

» Generally non-identifiable, only Z = 3 ,Z,
= Argument in the paper

» We propose a two-step approach
1. Find Z* —rank(Z,) > 1 “multi-graph” demixing with P = 1
2. SVD Z* for {Z*}/_, with orthogonal inputs and filters

Summary of additional aspects

» If only few samples of the observation are available, introduce sampling
matrices

» Robust demixing: relax the equality constraint in the presence of noise
» Prior information

= Probabilistic distributions in the objective

= Deterministic knowledge in terms of constraints. E.qg:

1. {h}7_, known removes bilinearity
2. Known values of x, =
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Demixing in random graphs

» Recovery rates on Erdos-Rényi graphs (N = 50) for varying P and Q
({Qp=QP,=P}f ), L=2
» single-graph (left), two coupled graphs (right)
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» Left: (P =3, Q= 3) harder than (P =2, Q = 6) = Q is critical

» Right: two coupled graphs (o« = 1 equal, « = 0 random)
=- Recovery is maintained for large coupling: a ~ 0.7
= Topology is central!

Demixing in brain graphs

» Graphs (N = 66) representing the brain anatomy of several individuals
[Hagmann08§]
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» Feasible demixing even for real-world graphs
= Expected performance decay for increasing P and Q

Discussion and road ahead

» |dentifiability conditions
= Q: Whenis {x,, h,}__, the unique solution (up to scaling)?
=- Deterministic or probabilistic model assumptions

» Exact recovery conditions
= Q: When does the convex relaxation succeed? Hypotheses:
= Lower bound on N to guarantee recovery for given P and Q
= Dependence on algebraic features of the graph-shift S
= Some graph topologies are more amenable

» Envisioned application domains
= Opinion formation in social networks
=- Event-driven information cascades
= ldentify sources of abnormal brain activity
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