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Model-Based Iterative Reconstruction 
(MBIR)
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 Computed Tomography (CT) Reconstruction
 Diagnostic Radiology
 Additive Manufacturing Inspection

 MBIR Flowchart
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Advantage of MBIR over Filtered-Back 
Projection (FBP)
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 Superior Image Quality: Low Noise and High Resolution 

FBP MBIR
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Prior Model in MBIR
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 Accurate prior modeling is critical to the image quality of MBIR.

 Typical Prior Model: MRF
 Penalize intensity fluctuation in the neighborhood
 Challenge: Noise-induced fluctuation vs. underlying object

 Solution: Prior Model from an Image Database

Image DB/
Prior Knowledge 
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MBIR Optimization
 MAP Estimation

 First-order iterative optimization
 Iterative Coordinate Descent (ICD) / Ordered Subset (OS)
 Prior model should be first-order differentiable.
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Plug-and-Play (PnP) Framework
 Variable Splitting

 Alternating Direction Method of Multipliers (ADMM)
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Augmented 
Lagrangian

Step 1: Reconstruction Module

Step 2: De-noising Module

Independent Module for De-noising

Step 3: Update Dual Variable
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Deep Residual Learning for De-noising
 Deep Neural Network
 Powerful performance for vision tasks such as de-noising
 Weights of a neural network learned on large training dataset
 Challenge: Long training time

 Deep Residual Learning for Efficient Training
 Bypassing low-freq. image
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Deep Residual Learning: Training
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 Cost

 Training Database
 40x40 patches for all slices, Data augmentation (flip, rotation)
 Randomly selected 256000 patches, mini-batch size: 128

Database
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Deep Residual Learning: Testing
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MBIR Result: Qualitative @ 1 iter.
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Standard MBIR with 
MRF Prior
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Deep Learning Prior
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MBIR Result: RMSD
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Significant Speed-up with Faster Convergence



Computational Time
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 Deep Learning Training Time
 4 NVIDIA Titan X GPU (12GB memory)
 Google Tensor Flow
 65 minutes / 50 epochs

 Deep Learning Testing Time
 ~10ms/slice

 Standard MBIR and PnP MBIR require similar amount of 
recon. time per iteration. 



Conclusion
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 Summary
1. Image prior modeling from FBP/MBIR database
 Deep Residual Learning for Image De-noising

2. Incorporating the prior model from a database into MBIR
 Plug-and-Play Optimization Framework

 Deep Residual Learning is effective in reducing the noise and 
enhancing the resolution in FBP.

 PnP MBIR with deep learning prior significantly improves the 
image quality compared with standard MBIR.
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