BACKGROUND

1 Image blur model: b = k®x + n, where & Is a convolution process.

1 Blind image deblurring (BID) Is to recover both the latent sharp image x
and blur kernel k, from only blurry observation b with noise n.

» highly ill-posed problem because the feasible solution is not only unstable to

noise but also non-unique.

» Previous image priors either can’t solve BID [1] or suffer from high

complexity. [2]

1 Previous graph Laplacian regularizer [3] in GSP has shown to promote

piecewise-smooth (PWS) recovered signal behavior.

» We explore the relationship between graph and image blur, and propose a

graph-based prior for blind image deblurring.

OBSERVATION AND MOTIVATION

1 Graph weight Is defined using Gaussian kernel:
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EXPERIMENTAL RESULTS

[ Artificial Cases. Each sharp image convolves with a 7x7 blur kernel

REWEIGHTED GRAPH TOTAL VARIATION PRIOR

1 We propose a novel reweighted graph total variation (RGTV) prior that
can promote bi-modal distribution
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] Different from conventional graph total variation (GTV) [4] with fixed
welghts, the weights of RGTV are also functions of x, which promotes

bi-modal weight distribution.
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1 A skeleton image Is proposed as a proxy, which is a PWS version of the % o1 oz 03 s o5 %0 o1 oz o3 o1 s
original image that preserves strong edges while removes textural details. d=lxx d=x; x|

Bl - A8 2

1 The graph weight distribution:
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] Observation:
» Sharp patch and its skeleton version have bi-modal distribution.
» Bi-modal distribution of skeleton image is more desirable.
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BLIND IMAGE DEBLURRING ALGORITHM

] The objective function for blind image deblurring:
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1 We alternatingly solve the sub-problem:
X = arg mxin— Ik®x — b|5 + AlIxlrerv

with a prime-dual algorithm [5] and the sub-problem

>

1

which has closed-form solution.

» Quantitative Comparisons (PSNR:B):
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Methods Butterfly Lena Parrot
Krishnan et al. 29.4 28.9 29.3
Levin et al. 29.9 29.4 29.2
Michaeli & Irani 30.6 30.3 31.9
Pan et al. 30.4 30.8 32.0
Ours 30.8 31.0 32.7
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(d) Michaeli & Irani

(e) Pan et al.

(f) RGTV.
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