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➢ Lemma: Assume that 𝛀(𝑆) is invertible. Then the decrease in 𝑓 due to adding node 

𝑣 to 𝑆 is given by

➢ Corollary: The objective function 𝑓(𝑆) is a monotonically nonincreasing set function

• Note: for general 𝐂 and 𝛀𝟎, it is possible to construct counterexamples where 

supermodularity does not hold 

• In the remainder of the main results, we specialize to the case 𝐂 = 𝐈 and assume 

that 𝛀𝟎 is a (possibly singular) Stieltjes matrix

➢ Theorem: The objective function 𝑓(𝑆) is supermodular if 𝐂 = 𝐈 and 𝛀𝟎 is a 

(possibly singular) Stieltjes matrix

• Greedy AG-SLL algorithm with performance guarantee:

• Corollary: Let 𝑆 be the sampling set obtained from Algorithm 1, 𝑆∗ a minimizer of

𝑓(𝑆) over sets of size |𝑆| = 𝑠, and 𝑆1
∗ a minimizer of 𝑓(𝑆) over singletons (e.g. from

first iteration of Algorithm 1). Then

Main Results and AG-SSL Algorithm

• Community detection: partition the nodes into well-connected groups based on 

the connectivity structure of a graph

• AG-SSL: node label (membership) querying during community detection process

• Datasets: (1) Karate club network (34 nodes); (2) Dolphin network (62 nodes)

a) Only 2 community labels (+1 or -1) – control multi-label class representation issue

b) Network topology is given – control graph construction issue

c) Small network size – tracking similarity (overlapping sampled nodes) to GSP

• Comparative Methods:

1) Random sampling (Rand)

2) Graph spectral proxy (GSP) [4]

3) Graph shift operator (GSO) [5]

4) Chamon-Ribeiro’s method (CRM) [6]

 Stieltjes matrix

• A real symmetric matrix 𝐗 is said to be a (possibly singular) Stieltjes matrix if 

it is positive semidefinite and its off-diagonal entries are non-positive

• Examples: (unnormalized) graph Laplacian matrix 𝐋 = 𝐃 − 𝐀, normalized 

graph Laplacian matrix 𝐋𝑵 = 𝑫−𝟏/𝟐𝐋 𝑫−𝟏/𝟐. 𝐀: weight matrix. 𝐃 = 𝐝𝐢𝐚𝐠 𝐀𝟏
• Inverse-positivity property: the inverse of a Stieltjes matrix is element-wise 

non-negative

 Supermodularity

• A set function 𝑓 𝑆 is supermodular if 𝛿𝑣 𝑆 ≥ 𝛿𝑣 𝑇 for any 𝑆, 𝑇 = 𝑆 ∪ 𝑢 , 𝑢 ∉
𝑆, and 𝑣 ∉ 𝑇,  where 𝛿𝑣 𝑆 = 𝑓 𝑆 − 𝑓(𝑆 ∪ 𝑣 ) is the decrease due to adding 

𝑣 to 𝑆 – i.e., diminishing decrease in 𝑓 𝑆
 Our model

• 𝒙: the signal (i.e., labels) to be recovered on the graph 𝐺 = 𝑉, 𝐸 . 𝑉 = 𝑛.
• Model 𝒙 as a random signal with a multivariate Gaussian prior distribution

• Ω0: precision matrix with 𝑅𝑎𝑛𝑘(Ω0) = 𝑛 or 𝑛 − 1 (improper Gaussian)

• A total of 𝑚 noisy linear observations of the form 𝒚 = 𝐂𝒙 + 𝒏 are available 

to be taken. 𝐂: fixed 𝑚 × 𝑛 measurement matrix.  𝒏 ∼ 𝑁 (𝟎, 𝜎2 𝐈)
 Active Graph-based Semi-Supervised Learning (AG-SSL)

• Subset selection: select 𝑆 with 𝑆 = 𝑠 ≤ 𝑚 s.t. 𝒚𝑆 = 𝐂𝑆𝒙 + 𝒏𝑆. 𝐂𝑆 : submatrix 

of 𝐂 with rows indexed by 𝑆
• Posterior distribution                                                  is also Gaussian with 

precision matrix                     . Assume 𝛀(𝑆) to be non-singular for 𝑆 ≠ {∅}
• MSE estimator:                           . 𝚺 𝑆 = 𝛀−𝟏 𝑆 : posterior covariance matrix

• The corresponding MSE is

• Goal of AG-SSL: select a set 𝑆 ⊂ 𝑉 with 𝑆 = 𝑠 to minimize 𝑓(𝑆)
❖ Note: maximizing the posterior distribution is equivalent to solving the 

following minimization problem with 𝛼 = 𝜎2:
❖ This formulation coincides with the formulation of graph-based SSL [1-3]

❖ And its solution is also given by the MSE estimator (posterior mean)

Background and Problem Formulation

• Active Graph-based Semi-Supervised Learning (AG-SSL): actively select a

small set of labeled examples and utilize their graph-based relation to other

unlabeled examples to aid in machine learning / signal processing tasks

• A revisit to graph-based SSL formulation [1-3] with strategic node information

querying and a performance guaranteed greedy algorithm

• Different from the perspective of graph signal processing and sampling, we

dispense with any assumptions on the bandlimitedness of “graph signals”

• We formulate the problems of inferring a graph signal (labels) based on an

incomplete set of noisy linear observations as well as selecting the set of

observations to maximize the precision of this inference

• We prove that under a broad class of regularization functions parameterized

by the family of Stieltjes matrices, the objective function is supermodular

in the set 𝑆 ⊂ 𝑉 of labeled examples

Abstract

AG-SSL on Community Detection and Comparative GSP Methods

• 𝛀𝟎 = 𝐋 unnormalized graph Laplacian and 𝝈𝟐 =
𝟏

𝐭𝐫 𝛀𝟎

• 𝛀𝟎 = 𝐋𝑵 normalized graph Laplacian and 𝝈𝟐 =
𝟏

𝐭𝐫 𝛀𝟎

✓ The proposed AG-SSL algorithm yields perfect community

detection by only sampling 2 nodes in each dataset

• Fraction of overlapping samples to other GSP methods 

✓ Relaxed (approximate) bandwidth in GSP → higher similarity

Experimental Results

Karate

DolphinKarate

Dolphin


