Fusion of Multiple Multiband Images with Complementary Spatial and Spectral Resolutions

Reza Arablouei

UΑ

ĥ

www.csiro.au

Spectral imaging

- combination of *spectroscopy* and *image forming*
- spatial and spectral information is analysed to detect, identify, or discriminate objects, patterns, or chemical composition of material
- application in computer vision, remote sensing, biomedicine, surveillance, precision agriculture, environmental studies, forensics, nanoparticle research, food science, mining, forestry, etc.

Problem

panchromatic

multispectral

hyperspectral

fused hyperspectral

Forward observation model

K observed multiband images with L_k bands & N_k pixels:

$$\mathbf{Y}_{k} = \mathbf{R}_{k} \mathbf{X} \mathbf{B}_{k} \mathbf{S}_{k} + \mathbf{P}_{k}, k = 1, \dots, K$$

 $\mathbf{X} \in \mathbb{R}^{L \times N}$: target multiband image with L spectral bands & N pixels $\mathbf{R}_k \in \mathbb{R}^{L_k \times N}$: spectral response of the kth sensor $\mathbf{B}_k \in \mathbb{R}^{N \times N}$: band-independent spatial blurring matrix representing a 2D convolution with the point-spread function of the kth sensor $\mathbf{S}_k \in \mathbb{R}^{N \times N_k}$: sparse matrix with N_k ones and zeros elsewhere representing a 2D uniform downsampling of ratio $D_k = \sqrt{N/N_k}$ $\mathbf{P}_k \in \mathbb{R}^{L_k \times N_k}$: additive perturbation representing the noise or error associated with the observation of \mathbf{Y}_k

Linear mixture model

$\mathbf{X} = \mathbf{E}\mathbf{A} + \mathbf{P}$

 $\mathbf{E} \in \mathbb{R}^{L \times M}$: matrix of *M* endmembers

 $\mathbf{A} \in \mathbb{R}^{M \times N}$: matrix of endmember abundances

 $\mathbf{P} \in \mathbb{R}^{L \times N}$: perturbation matrix accounting for any inaccuracy or mismatch in the model

nonnegativity and sum-to-one assumptions:

$$\mathbf{A} \geq 0, \mathbf{1}_M^{\mathsf{T}} \mathbf{A} = \mathbf{1}_N^{\mathsf{T}}, i = 1, ..., N$$

Fusion model

$$\mathbf{Y}_k = \mathbf{R}_k \mathbf{E} \mathbf{A} \mathbf{B}_k \mathbf{S}_k + \widecheck{\mathbf{P}}_k$$

aggregate perturbations:

$$\breve{\mathbf{P}}_k = \mathbf{P}_k + \mathbf{R}_k \mathbf{P} \mathbf{B}_k \mathbf{S}_k$$

- Instead of estimating **X** directly, we estimate **A** from the observations \mathbf{Y}_k , k = 1, ..., K, given the endmember matrix **E**.
- This substantially reduces the dimensionality of the fusion problem and consequently its computational complexity.
- Estimating A then X gives an unmixed fused image.
- It requires the prior knowledge of the endmembers.
- The endmembers can be selected from a library of known spectral signatures or extracted from Y_k.

Solution

assumption: $\check{\mathbf{P}}_k$, k = 1, ..., K, are statistically independent and

$$\check{\mathbf{P}}_k \sim \mathcal{M}\mathcal{N}_{L \times N}(\mathbf{0}_{L \times N}, \mathbf{\Lambda}_k, \mathbf{I}_N)$$

maximum-likelihood estimate of \mathbf{A} is the solution of

$$\min_{\mathbf{A}} \frac{1}{2} \sum_{k=1}^{K} \left\| \mathbf{\Lambda}_{k}^{-1/2} (\mathbf{Y}_{k} - \mathbf{R}_{k} \mathbf{E} \mathbf{A} \mathbf{B}_{k} \mathbf{S}_{k}) \right\|_{\mathrm{F}}^{2}$$

• Unregularized MLE problem is usually ill-posed and unidentifiable. regularized maximum-likelihood:

$$\min_{\mathbf{A}} \frac{1}{2} \sum_{k=1}^{K} \left\| \mathbf{\Lambda}_{k}^{-1/2} (\mathbf{Y}_{k} - \mathbf{R}_{k} \mathbf{E} \mathbf{A} \mathbf{B}_{k} \mathbf{S}_{k}) \right\|_{\mathrm{F}}^{2} + \alpha \| \nabla \mathbf{A} \|_{2,1} + \iota(\mathbf{A})$$

Solution

regularized maximum-likelihood:

$$\min_{\mathbf{A}} \frac{1}{2} \sum_{k=1}^{K} \left\| \mathbf{\Lambda}_{k}^{-1/2} (\mathbf{Y}_{k} - \mathbf{R}_{k} \mathbf{E} \mathbf{A} \mathbf{B}_{k} \mathbf{S}_{k}) \right\|_{\mathrm{F}}^{2} + \alpha \| \nabla \mathbf{A} \|_{2,1} + \iota(\mathbf{A})$$

$\|\nabla \mathbf{A}\|_{2,1}$: isotropic vector total-variation penalty $\nabla \mathbf{A} = [(\mathbf{A}\mathbf{D}_h)^{\mathsf{T}}, (\mathbf{A}\mathbf{D}_v)^{\mathsf{T}}]^{\mathsf{T}}$

 \mathbf{D}_h and \mathbf{D}_v : discrete differential matrix operators $\alpha \ge 0$: regularization parameter

$$\iota(\mathbf{A}) = \begin{cases} 0 & \mathbf{A} \in \{\mathbf{A} | \mathbf{A} \ge 0, \mathbf{1}_M^{\mathsf{T}} \mathbf{A} = \mathbf{1}_N^{\mathsf{T}} \} \\ +\infty & \mathbf{A} \notin \{\mathbf{A} | \mathbf{A} \ge 0, \mathbf{1}_M^{\mathsf{T}} \mathbf{A} = \mathbf{1}_N^{\mathsf{T}} \} \end{cases}$$

Algorithm

variable splitting:

$$\min_{\mathbf{A},\{\mathbf{U}_k\},\mathbf{V},\mathbf{W}} \frac{1}{2} \sum_{k=1}^{K} \left\| \mathbf{\Lambda}_k^{-1/2} (\mathbf{Y}_k - \mathbf{R}_k \mathbf{E} \mathbf{U}_k \mathbf{S}_k) \right\|_F^2 + \alpha \|\mathbf{V}\|_{2,1} + \iota(\mathbf{W})$$

subject to: $\mathbf{U}_k = \mathbf{A} \mathbf{B}_k, \mathbf{V} = \nabla \mathbf{A}, \mathbf{W} = \mathbf{A}$

augmented Lagrangian:

$$\mathcal{L}(\mathbf{A}, \mathbf{U}_{1}, ..., \mathbf{U}_{K}, \mathbf{V}, \mathbf{W}, \mathbf{F}_{1}, ..., \mathbf{F}_{K}, \mathbf{G}, \mathbf{H}) = \frac{1}{2} \sum_{k=1}^{K} \left\| \mathbf{\Lambda}_{k}^{-1/2} (\mathbf{Y}_{k} - \mathbf{R}_{k} \mathbf{E} \mathbf{U}_{k} \mathbf{S}_{k}) \right\|_{F}^{2} + \alpha \|\mathbf{V}\|_{2,1} + \iota(\mathbf{W}) + \frac{\mu}{2} \sum_{k=1}^{K} \|\mathbf{A}\mathbf{B}_{k} - \mathbf{U}_{k} - \mathbf{F}_{k}\|_{F}^{2} + \frac{\mu}{2} \|\nabla\mathbf{A} - \mathbf{V} - \mathbf{G}\|_{F}^{2} + \frac{\mu}{2} \|\mathbf{A} - \mathbf{W} - \mathbf{H}\|_{F}^{2}$$

Algorithm

alternating direction method of multipliers:

$$\begin{aligned} \mathbf{A}^{(n)} &= \arg\min_{\mathbf{A}} \sum_{k=1}^{K} \left\| \mathbf{A} \mathbf{B}_{k} - \mathbf{U}_{k}^{(n-1)} - \mathbf{F}_{k}^{(n-1)} \right\|_{\mathrm{F}}^{2} + \left\| \nabla \mathbf{A} - \mathbf{V}^{(n-1)} - \mathbf{G}^{(n-1)} \right\|_{\mathrm{F}}^{2} \\ &+ \left\| \mathbf{A} - \mathbf{W}^{(n-1)} - \mathbf{H}^{(n-1)} \right\|_{\mathrm{F}}^{2} \\ \mathbf{U}_{k}^{(n)} &= \arg\min_{\mathbf{U}_{k}} \frac{1}{2} \left\| \mathbf{\Lambda}_{k}^{-1/2} (\mathbf{Y}_{k} - \mathbf{R}_{k} \mathbf{E} \mathbf{U}_{k} \mathbf{S}_{k}) \right\|_{\mathrm{F}}^{2} + \frac{\mu}{2} \left\| \mathbf{A}^{(n)} \mathbf{B}_{k} - \mathbf{U}_{k} - \mathbf{F}_{k}^{(n-1)} \right\|_{\mathrm{F}}^{2} \\ \mathbf{V}^{(n)} &= \arg\min_{\mathbf{V}} \alpha \| \mathbf{V} \|_{2,1} + \frac{\mu}{2} \left\| \nabla \mathbf{A}^{(n)} - \mathbf{V} - \mathbf{G}^{(n-1)} \right\|_{\mathrm{F}}^{2} \\ \mathbf{W}^{(n)} &= \arg\min_{\mathbf{V}} \iota(\mathbf{W}) + \frac{\mu}{2} \left\| \mathbf{A}^{(n)} - \mathbf{W} - \mathbf{H}^{(n-1)} \right\|_{\mathrm{F}}^{2} \\ \mathbf{F}_{k}^{(n)} &= \mathbf{F}_{k}^{(n-1)} - \left(\mathbf{A}^{(n)} \mathbf{B}_{k} - \mathbf{U}_{k}^{(n)} \right), k = 1, \dots, K \\ \mathbf{G}^{(n)} &= \mathbf{G}^{(n-1)} - \left(\nabla \mathbf{A}^{(n)} - \mathbf{V}^{(n)} \right) \\ \mathbf{H}^{(n)} &= \mathbf{H}^{(n-1)} - \left(\mathbf{A}^{(n)} - \mathbf{W}^{(n)} \right) \end{aligned}$$

experiment:

fusing three multiband images, viz. a panchromatic image, a multispectral image, and a hyperspectral image

+

panchromatic multispectral hyperspectral

+

fused

DATA 61

datasets:

- Botswana: 400×240 pixels and 145 spectral bands, captured by the Hyperion sensor aboard the Earth Observing 1 (EO-1) satellite
- Washington DC Mall: 400 × 300 pixels and 191 bands, captured by the airborne-mounted Hyperspectral Digital Imagery Collection Experiment (HYDICE)

Both cover the visible near-infrared (VNIR) and short-wavelength infrared (SWIR) ranges with uncalibrated, noisy, and water-absorption bands removed.

synthesis of the images from the datasets:

- hyperspectral image: Gaussian blur filter, kernel size 5×5 , variance 1.28, downsampling ratio 4
- multispectral image: Gaussian blur filter, kernel size 3 × 3, variance 0.64, downsampling ratio 2, the spectral responses of the Landsat 8 multispectral sensor
- panchromatic image: the panchromatic band of the Landsat 8 sensor with no spatial blurring or downsampling

Gaussian white noise is added to each band so that the bandspecific SNR is 30 dB for the multispectral and hyperspectral images and 40 dB for the panchromatic image.

spectral responses of the Landsat 8 multispectral sensor:

benchmark algorithms:

- panchromatic + multispectral:
 - band-dependent spatial detail (BDSD)
 - modulation-transfer-function generalized Laplacian pyramid with high-pass modulation (MTF-GLP-HPM)
- pansharpened multispectral + hyperspectral:
 - HySure
 - R-FUSE-TV

performance metrics:

- relative dimensionless global error in synthesis (ERGAS)
- spectral angle mapper (SAM)
- Q2ⁿ

HySure R-FUSE-TV

panchromatic multispectral

hyperspectral

Simulation results

Simulation results

Botswana						
	ERGAS	SAM (°)	$Q2^n$	time (s)		
proposed	1.378	1.454	0.969	47.01		
BDSD & HySure	2.268	2.228	0.923	62.58		
BDSD & R-FUSE-TV	2.276	2.238	0.923	62.10		
MTF-GLP-HPM &	2.034	2.256	0.938	62.78		
HySure						
MTF-GLP-HPM &	2.044	2.265	0.938	62.20		
R-FUSE-TV						

Simulation results

Washington DC Mall						
	ERGAS	SAM (°)	$Q2^n$	time (s)		
proposed	2.276	2.533	0.975	59.52		
BDSD & HySure	4.039	4.767	0.923	79.68		
BDSD & R-FUSE-TV	4.141	4.787	0.921	78.41		
MTF-GLP-HPM &	4.240	4.809	0.916	79.28		
HySure						
MTF-GLP-HPM &	4.354	4.827	0.913	78.13		
R-FUSE-TV						