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There are in total M distinct discrete distributions p1, ..., pM and a testing sequence y, whichconsists of n i.i.d. samples generated by one of the M distributions.
•Which is the distribution that generates the test sequence?
• pi’s for i > M1 are unknown;
• for an unknown pi, a training sequence ti is available.

Problem formulation

For parametric model, to make sequence detection between two distribution p1 and p2, theoptimal test is the likelihood ratio test (LRT), and the optimal error exponent is the Chernoffinformation C (p1, p2). [1]For universal outlier hypothesis testing, the error exponent of GLRT is determined by theBhattacharyya distance between the typical and outlier distributions. [2]

Review of Existing Work

σ (y) = argmin
i

{
D(γ(y)||pi), if i 6 M1
D(γ(y)||γ(ti)), if i > M1

}
. (T)

Test 1.

• γ(y) denotes the empirical distribution of y given by
γ(y) , number of samples y in ylength of y .

•D(·||·) denotes the KL divergence given by
D(p||q) = ∑

y∈Y
p(y) log p(y)

q(y). (1)

Testing

Apply test (T) to the nonparametric multiple hypothesis testing problem. The error expo-nent of the maximum error probability is given by
min
i,j :i6=j ei,j ,

where ei,j is given as follows.
• For i 6 M1 and j 6 M1, ei,j = C (pi, pj);
• For i 6 M1 and j > M1,

ei,j = min
q,qj∈∆ D(q||pj) + βD(qj ||pj) (2)
s.t. D(q||qj) > D(q||pi),where ∆ = {q :∑y∈Y q(y) = 1, 0 6 q(y) 6 1};

• For i > M1 and j 6 M1,
ei,j = min

qi∈∆ C (qi, pj) + βD(qi||pi); (3)
• For i > M1 and j > M1,

ei,j = min
q,qi,qj∈∆ D(q||pj) + βD(qi||pi) + βD(qj ||pj) (4)
s.t. D(q||qj) > D(q||qi).

Theorem 1.

Main Result

• C (·, ·) denotes the Chernoff information given by
C (p, q) = max

λ∈[0,1]− log( ∑
y∈Y

p(y)λq(y)1−λ). (5)
• β denotes the ratio between the lengths of training and testing sequences, β = limn→∞ n̄

n.
1. If β > 0, test (T) is exponentially consistent. Especially, if β →∞, the error exponentgoes to min{i,j :i6=j}C (pi, pj), which is optimal.2. If β = 0 and M1 < M , the test (T) is not exponentially consistent.
Corollary.

Main Result(continued)

• Approximation of error exponent (2)
min
q,qj∈∆ G(q, qj) =D(q||pj) + βD(qj ||pj)+l(D(q||qj)−D(q||pi)), (6)

where
l(x) = { 0, x > 012µx2, x < 0 (7)

then update
q(k+1)
j = P∆[q(k)

j − s∇Gqj(q(k), q(k)
j )] (8)

q(k+1) = P∆[q(k) − s∇Gq(q(k), q(k)
j )]. (9)

• For error exponent (3)
q(k+1)
j = P∆[q(k)

j − s∇Fqj(q(k)
j , λ

(k))] (10)
λ(k+1) = P[0,1][λ(k) + s∇Fλ(q(k+1)

j , λ(k))]. (11)

Computation of Error Exponent
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Fig.1: Impact of the Chernoff informationon error decay performance.
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Fig.2: Impact of the ratio β = n̄
n of thetraining and testing sequences onerror decay performance.

Numerical Experiment
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