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Introduction

Estimating the parameter of a Bernoulli
process p is a fundamental statistical prob-
lem with many applications, e.g.:

Photon-efficient active imaging

Laser

SPAD

Scene

• Conventional systems: nonadaptive, i.e.
number of trials fixed a priori.

• Alternative system: data-dependent
stopping, known as sequential estimation.

• Motivation: understanding whether such
adaptive systems improve estimation perfor-
mance.

• Goal: Given some trial budget constraint,
devise an optimal stopping strategy under a
mean-squared error loss function.

Contributions

1 Propose a stopping rule through a greedy
algorithm that seeks for the least achievable
error.

2 Generalize stopping rule to a rectangular
array of Bernoulli processes, representing
pixels in a natural scene.

3 Demonstrate a 4.45 dB improvement in
simulated active imaging scenarios.

This material is based upon work supported in part by the US National Science Foundation under Grant No. 1422034.

A Single Bernoulli Process

Probability of continuing observations after trial t:
πt : {0, 1}t → [0, 1], t = 0, 1, . . .

Number of observed trials T satisfies E[T ] ≤ n.
• Any stopping rule can be represented by a sequence

of continuation probabilities.

Adaptive Stopping Rule

Under Beta(α, β) prior, observing k successes in m
trials yields a Beta(α + k, β + m − k) distribution.

Bayes risk reduction from one additional trial:

∆R(k, m; α, β) = (α + k)(β + m − k)
(α + β + m)2(α + β + m + 1)2

Proposed data-adaptive stopping rule

Stop when Bayes risk reduction ∆R(k, m; α, β), for an additional trial, is below a specified threshold.

• Visualization of a stopping rule →Binary tree with continuation probability labels.
• All observation sequences with k successes in m trials yield the same continuation probability qk,m → Trellis.
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∆R(k, m; α, β) under Beta(1, 1) (uniform) prior (left) and continuation probabilities for a threshold of 0.005 (right).

• The lower the threshold, the higher the mean num-
ber of trials becomes.

• Only certain values of E[T ] are achievable with
binary continuation probabilities.

• Small improvement gained for a single Bernoulli
process. Byproduct is a significant improvement
in imaging applications, due to more efficient allo-
cation of trials across spatial locations.
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Figure 1: RMSE vs. true Bernoulli parameter, assuming Beta(1,1)
prior (uniform) and budget n = 123. Mean-squared error reduces
from 0.00134 to 0.00129, when averaged over 100 000 experiments.

Arrays of Bernoulli Processes
Scene raster-scanned using pulsed illumination
guided by proposed stopping rule.
• Data: arrays of number of pulses [mi,j]i,j and

detections [ki,j]i,j.
• Reconstruction: TV-regularized ML estima-

tion to exploit spatial correlations.

Results

• True image reflectivity in [0.001, 0.101].
• Beta(2, 152) prior assumed. Trial budget n = 200.

Binomial (Fixed) Adaptive (proposed)Reconstruction

MSE= 3.4056× 10−5

Reconstruction

MSE= 1.1779× 10−5

• Average over 100 experiments.

Budget Method
Binomial + TV Adaptive (proposed) + TV

n = 58 9.14e-05 3.43e-05
n = 196 3.37e-05 1.26e-05

Conclusion

• Proposed adaptive stopping rule that yields signif-
icant improvements over non-adaptive rule.

• Binomial and Negative Binomial stopping strate-
gies are rarely optimal.
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