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Arrays of Bernoulli Processes

A Single Bernoulli Process Adaptive Stopping Rule

Introduction

Scene raster-scanned using pulsed illumination

Probability of continuing observations after trial ¢: | |
cuided by proposed stopping rule.

{0, 1Y = (0,1, t=0,1,...

Under Beta(a, 8) prior, observing k successes in m
trials yields a Beta(a + k, 8 +m — k) distribution.

Estimating the parameter of a Bernoulli
process p is a fundamental statistical prob-

lem with many applications, e.g.: - Data: arrays of number of pulses |m; j|;; and

detections |k; ;. ;.

Number of observed trials T satisfies E|T| < n. Bayes risk reduction from one additional trial:

| - (a+k)(B+m — k)
AR(k,m;a, B) = (+ B +mPa+ B +m+1)>2

« Reconstruction: TV-regularized ML estima-
tion to exploit spatial correlations.

= Any stopping rule can be represented by a sequence

Photon-efficient active imaging

of continuation probabilities.

Proposed data-adaptive stopping rule Results

= True image reflectivity in [0.001, 0.101].
= Beta(2, 152) prior assumed. Trial budget n = 200.
Binomial (Fixed)

Stop when Bayes risk reduction AR(k, m; a, §), for an additional trial, is below a specified threshold.

Adaptive (proposed)

= Visualization of a stopping rule — Binary tree with continuation probability labels.

= All observation sequences with k successes in m trials yield the same continuation probability gy, — Trellis.
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« Goal: Given some trial budget constraint, n =196  3.37¢-05 1.26e-05

devise an optimal stopping strategy under a

AR(k, m;a, 8) under Beta(1, 1) (uniform) prior (left) and continuation probabilities for a threshold of 0.005 (right).

mean-squared error loss function.

Contributions

o Propose a stopping rule through a greedy
algorithm that seeks for the least achievable
eITOr.

® Generalize stopping rule to a rectangular
array of Bernoulli processes, representing
pixels in a natural scene.

® Demonstrate a 4.45 dB improvement in
simulated active imaging scenarios.

« The lower the threshold, the higher the mean num-
ber of trials becomes.

« Only certain values of E|T| are achievable with
binary continuation probabilities.

« omall improvement gained for a single Bernoulli
process. Byproduct is a significant improvement
in imaging applications, due to more efficient allo-
cation of trials across spatial locations.

This material is based upon work supported in part by the US National Science Foundation under Grant No. 1422034.
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Figure 1: RMSE vs. true Bernoulli parameter, assuming Beta(1,1)

prior (uniform) and budget n = 123. Mean-squared error reduces

from 0.00134 to 0.00129, when averaged over 100 000 experiments.

Conclusion

« Proposed adaptive stopping rule that yields signif-
icant improvements over non-adaptive rule.

« Binomial and Negative Binomial stopping strate-
oies are rarely optimal.
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