# **Optimal Stopping Times for Estimating Bernoulli Parameters** with Applications to Active Imaging Safa C. Medin, John Murray-Bruce, Vivek K Goyal

# Introduction

Estimating the parameter of a **Bernoulli process** p is a fundamental statistical problem with many applications, e.g.:



- **Conventional systems:** *nonadaptive*, i.e. number of trials fixed a priori.
- Alternative system: data-dependent stopping, known as *sequential estimation*.
- Motivation: understanding whether such adaptive systems improve estimation performance.
- Goal: Given some trial budget constraint, devise an *optimal stopping strategy* under a mean-squared error loss function.

# Contributions

- Propose a **stopping rule** through a greedy algorithm that seeks for the least achievable error.
- Generalize stopping rule to a rectangular array of Bernoulli processes, representing pixels in a natural scene.
- <sup>3</sup> Demonstrate a 4.45 dB improvement in simulated active imaging scenarios.

Boston University Electrical and Computer Engineering Department

# A Single Bernoulli Process

| Probability of continuing observations after trial $t$ :<br>$\pi_t : \{0, 1\}^t \to [0, 1],  t = 0, 1, \dots$ | Unde<br>trials |
|---------------------------------------------------------------------------------------------------------------|----------------|
| Number of observed trials T satisfies $\mathbb{E}[T] \leq n$ .                                                | Baye           |
| Any stopping rule can be represented by a sequence                                                            | $\Delta R$     |
| of continuation probabilities.                                                                                |                |

# Proposed data-adaptive stopping rule

Stop when Bayes risk reduction  $\Delta R(k, m; \alpha, \beta)$ , for an additional trial, is below a specified threshold.

• Visualization of a stopping rule  $\rightarrow$  **Binary tree** with continuation probability labels. • All observation sequences with k successes in m trials yield the same continuation probability  $q_{k,m} \to \mathbf{Trellis}$ .



 $\Delta R(k, m; \alpha, \beta)$  under Beta(1, 1) (uniform) prior (left) and continuation probabilities for a threshold of 0.005 (right).

• The lower the threshold, the higher the mean number of trials becomes.

• Only certain values of  $\mathbb{E}[T]$  are achievable with binary continuation probabilities.

• Small improvement gained for a single Bernoulli process. Byproduct is a significant improvement in imaging applications, due to more efficient allocation of trials across spatial locations.

# Adaptive Stopping Rule

ler Beta $(\alpha, \beta)$  prior, observing k successes in m ls yields a Beta $(\alpha + k, \beta + m - k)$  distribution.

es risk reduction **from one additional trial**:  $R(k,m;\alpha,\beta) = \frac{(\alpha+k)(\beta+m-k)}{(\alpha+\beta+m)^2(\alpha+\beta+m+1)^2}$ 





Scene raster-scanned using pulsed illumination guided by proposed stopping rule.





### **Arrays of Bernoulli Processes**

• Data: arrays of number of pulses  $[m_{i,j}]_{i,j}$  and detections  $[k_{i,j}]_{i,j}$ .

• Reconstruction: TV-regularized ML estimation to exploit spatial correlations.

# Results

• True image reflectivity in [0.001, 0.101]. • Beta(2, 152) prior assumed. Trial budget n = 200. Adaptive (proposed) Binomial (Fixed)





 $MSE = 1.1779 \times 10^{-5}$ 

• Average over 100 experiments.

| get |               | Method                     |
|-----|---------------|----------------------------|
|     | Binomial + TV | Adaptive (proposed) $+ TV$ |
| 58  | 9.14e-05      | 3.43e-05                   |
| 196 | 3.37e-05      | 1.26e-05                   |
|     |               |                            |

# Conclusion

 Proposed adaptive stopping rule that yields significant improvements over non-adaptive rule.

 Binomial and Negative Binomial stopping strategies are *rarely* optimal.

### References

<sup>[3]</sup> A. Kirmani, D. Venkatraman, D. Shin, A. Colaço, F. N. C. Wong, J. H. Shapiro, and V. K. Goyal, "First-photon imaging," Science, vol. 343, no. 6166, pp. 58–61, 2014.



<sup>[1]</sup> F. J. Anscombe, "Sequential estimation," J. Roy. Statist. Soc. Ser. B, vol. 15, no. 1, pp. 1–29, 1953.

<sup>[2]</sup> J. B. S. Haldane, "On a method of estimating frequencies," Biometrika, vol. 33, pp. 222–225, Nov. 1945.