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Voice Conversion Proposed Method

Voice conversion (VC) is a technigue for changing We propose a non-negative Tucker decomposition (NTD)-based dictionary learning
speaker information in input speech signal while method. The NTD is a non-negative extension of Tucker decomposition that
maintaining linguistic and emotion information. decomposes the input observation into a set of matrices and one core tensor.

In the spectral domain, the NTD decompose the input spectrogram into three
Non—negative matrix factorization (NMF)-based voice | matrices: a frequency basis matrix, a time basis matrix, and a core matrix.
conversion A core matrix is shared between speakers, and the time-varying matrices are
An input source signal is decomposed into a linear dependent on each speaker.
combination of basis from the source dictionary. We assume that the frequency basis matrices, the core matrix and the time basis
A target signal is constructed from the replaced bases of | matrices represent the speaker information, the codebook between the frequency

the target dictionary and the weights of source bases. bases and the phones and the phonemic information, respectively.
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dictionaries are learned while sharing a same activity | After each matrix in the model is estimated, the source and target parallel

NMF-based Dictionary Learning

matrix. dictionaries are calculated multiplying the frequency matrix by the core matrix.
This method needs a large number of parallel training | When converting, for the given source spectrogram, we estimate only the time
data. . bases matrix as the activity in NMF. _
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Conclusion
We proposed a dictionary learning of NMF-based VC
which allows NMF-VC for non-parallel training based on

NTD.
We obtained equivalent performance compared with a
conventional method using parallel data.
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