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Introduction

Compressed Sensing [1]

reconstruct a sparse vector € RY o
from its underdetermined linear measurement y = Ax +v € R (M < N)

x € RY : unknown sparse vector (most elements are zero)

A € RM*N . measurement matrix (M < N)

Yy = Ax +v € RM: measurement vector

va

noise vector : :
‘ Application

4 magnetic resonance imaging (MRI) [2]
4 wireless channel estimation [3]

[1] D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, vol. 52, no. 4, pp. 1289-1306, Apr. 2006.

[2] M. Lustig, D. L. Donoho, J. M. Santos, and J. M. Pauly, “Compressed sensing MRI,” IEEE Signal Process. Mag.,
vol. 25, no. 2, pp. 72-82, Mar. 2008.

[3] K. Hayashi, M. Nagahara, and T. Tanaka, “A user’s guide to compressed sensing for communications systems,”
IEICE Trans. Commun., vol. E96-B, no. 3, pp. 685-712, Mar. 2013.



Introduction

Distributed Compressed Sensing

unknown sparse vector & € RY Application [4]

4 sensor network
et i Ak 4+ video coding
A A2 Ap ™. a 4 image fusion

communications :
link v

measurement matrix: A; € RMsxH
measurement vector: y, = Apx + v, € RM*

reconstruct a from Yk, Ak (k — 17 R K)

[4] H. Yin, J. Li, Y. Chai, and S. X. Yang, “A survey on distributed compressed sensing: theory and applications,”
Frontiers of Computer Science, vol. 8, no. 6, pp. 893-904, Dec. 2014.



Introduction

Conventional Methods (1/2)

4+ D-LASSO [5]
(Distributed-Least Absolute Shrinkage and Selection Operator)
+ D-ADMM [6]

(Distributed-Alternating Direction Method of Multipliers)

- The computational complexity might be large

4+ D-IHT [7]
(Distributed-Iterative Hard Thresholding)

v Each node performs simple calculations
- The sparsity level is required

[5] J. A. Bazerque and G. B. Giannakis, "Distributed spectrum sensing for cognitive radio networks by exploiting
sparsity,” IEEE Trans. Signal Process., vol. 58, no. 3, pp. 1847-1862, Mar. 2010.

[6] J. F. C. Mota, J. M. F. Xavier, P. M. Q. Aguiar, and M. Pischel, “Distributed basis pursuit,” IEEE Trans. Signal Process.,
vol. 60, no. 4, pp. 1942-1956, Apr. 2012.

[7] S. Patterson, Y. C. Eldar, and |. Keidar, “Distributed sparse signal recovery for sensor networks,” in Proc. IEEE

ICASSP, May 2013.
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Conventional Methods (2/2)

4 Distributed AMP [8], Multi-processor AMP [9]

(Approximate Message Passing)

- much energy at fusion node

v Each node performs simple calculations [= vulnerable to failure of node
v The sparsity level is not required
- A fusion node communicating with all nodes is required

e

applicable not applicable

[8] P. Han, R. Niu, M. Ren, and Y. C. Eldar, “Distributed approximate message passing for sparse signal recovery,”
in Proc. IEEE GlobalSIP, Dec. 2014.

[9] J. Zhu, R. Pilgrim, and D. Baron, “An overview of multi-processor approximate message passing,” in Proc. IEEE CISS,
Mar. 2017.



Introduction

Summary of This Study

Purpose of This Study

oropose a fully distributed AMP algorithm,
which does not require any fusion node

obtain update equations of the AMP algorithm
for distributed measurements

local computation

at each node
global computation propose summation propagation
using communications for the global computation

@ show the validity of the proposed algorithm via computer simulation
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Preliminaries

AMP Algorithm (1/2)

r ¢ RY : unknown sparse vector

A € RM XN : measurement matrix (M < N)
I.i.d. elements with zero mean and unit variance

Y = Ax + v € RM: measurement vector

AN

ARl = = arg min ||z||; subject to y = Az
z€RN

approximate belief propagation
for a [10]

v low complexity (no matrix inversion, O(MN))
v asymptotic analysis

[10] D. L. Donoho, A. Maleki, and A. Montanari, “Message passing algorithms for compressed sensing: I. motivation and
construction,” in Proc. IEEE Inf. Theory Workshop, Jan. 2010.

[11] D. L. Donoho, A. Maleki, and A. Montanari, “Message passing algorithms for compressed sensing,” Proc. Nat.
Acad. Sci., vol. 106, no. 45, pp. 18 914-18 919, Nov. 2009.



Preliminaries

AMP Algorithm (2/2)

x € RY . unknown sparse vector

y = Ax + v € RM : measurement vector

(1) Initialization: ¢ = 1,&(1) = 0, 5(0) = 0,7(0) = 0,6%(0) = 0

[—-@ s(t) =y — Ad(t) + 5 s(t — 1) (if (r(t — 1):6%( — 1))

(t —t+ 1) A = M/N : measurement ratio () : mean

@ r(t) =x(t) + %ATs(t) example of n(-;-): soft thresholding

@ HS Hz n(u;0°)1
—(5) @(t+1) =n (r(t);6*(1))

estimate of @




Preliminaries

Consensus Propagation [12] (1/2)

A distributed algorithm for on undirected graphs
1 K
All nodes obtain the mean u = = >
S
number of nodes initial value at node k

communicate with neighbor nodes

C
C1 2

Ck+1
Ck+1 (L

[12] C. C. Moallemi and B. V. Roy, “Consensus propagation,” IEEE Trans. Inf. Theory, vol. 52, no. 11, pp. 4753-4766, Nov.
2006.



Preliminaries

Consensus Propagation [12] (2/2)

; message from node k£ to node j

e The graph is a tree

* # of iterations > graph diameter

message from other nodes
at the previous iteration

t'—1 0
1+ Z Lg%) (”l(c—)m_o)
i1ENE\J

t"—1 t"—1
Ck + ZzENk\J 5% )Vz(—>k ) V(o) _ 0
(t/ ) k-)] T
L4+ 2 iening liosk

# average consensus is achieved

[12] C. C. Moallemi and B. V. Roy, “Consensus propagation,” IEEE Trans. Inf. Theory, vol. 52, no. 11, pp. 4753-4766, Nov.

2006.



Outline

1. Introduction

2. Preliminaries
i. AMP Algorithm
ii. Consensus Propagation

3. Proposed Method: Distributed AMP Algorithm
4. Simulation Result

5. Conclusion



Proposed Method: Distributed AMP Algorithm

Distributed Compressed Sensing

unknown sparse vector & € RY

.

.

.

.
.
* a
. S
.
.
o*
.

A All measurements Y1, ..., YK
can be combined as

Y1 A (%]

‘Q
*
‘O
2

communications :
link V

measurement matrix: A; € RMsxH
measurement vector: y, = Apx + v, € RM*

reconstruct x from Yk, Ak (7‘€ — 17 ey K)
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AMP Algorithm for Distributed Model (1 ( /2)

centralized model distributed model
y=Ax +v Y1 | A v
| = ; x+ |
YK | L AK | VK |
AMP algorithm AMP Algorithm

(t) =y — Az(?) sk(l) = yx — Ap(t)
1 # 1 / A2
+ st = 1) (n (r(t —1);6%(t - 1)) + xSkt =1 (r(t—1);6°(t - 1))

(1) = #(t) + 1 A" () — (1) = > ( (1) + 3 AT (0)
6°(t) = H‘j\(jj)\y% —&Q(t) — Z HSJ’\}(?\)[”Z
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AMP Algorithm tor Distributed Model (1 ( /2)

centralized model distributed model
y:Aaj—|—fU _yl_ [ A, 1 _’Ul_
: : — €T + .
81@ YK - A VK |
s(t) = :
AMP algorithm sk (t) AMP Algorithm

(t) =y — Az(t) sk(t) = yr — Arz(t)
1 # 1 / A2
+ st = 1) (n (r(t —1);6%(t - 1)) + xSkt =1 (r(t—1);6°(t - 1))

(1) = #(t) + 1 A" () — (1) = > ( (1) + 3 AT (0)
6°(t) = H‘j\(jj)\y% —&Q(t) — Z HSJ’\}(?\)[”Z
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AMP Algorithm tor Distributed Model (1 ( /2)

centralized model distributed model

y:Aa:'—I—’U _3/1_ A vy |

S ; x|
o= | el LA ] e

AMP algorithm sk (1) AMP Algorithm
s(t) =y — Ax(t) Si(t) = yp — Arx(t)
+%st—1<n( (t—1);6 (t—l))># +%skt—1<n( (t—1);6°(t—1)))
1 5 /1
r(t) = 5(0) + 5 AT a(t) — () = 3 ( La(t) + - Afsy(t ))

K

s(t)|I3 A2/ sk(t)|3
6°(t) = ”]\(j])\y —0 (t) = | M(J\)f”
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AMP Algorithm tor Distributed Model (1 ( /2)

centralized model distributed model
y:Aa’;_|_fv _yl_ | Al ] _’Ul_
| = ; x|
s(t) = Sli(t) YK L Axk | VK |
AMP algorithm _SK.(t)_ AMP Algorithm
s(t) =y — Ax(t) Sk(t) = yr — Arz(t)
1 # 1
+Zst—1<n( r(t—1);6%(t—1))) —I—Zskt—1<n( r(t—1);6%(—1)))

’l"(t) — Zf?(t) -+ %ATs(t)ﬁ’r(t) = ([1( ( ) + Ak Sk( ))

k=

) O e o SO
E(t+1) =n(r(t); 62(75))*:&(75 +1) =n(r(t); 6°(¢))
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AMP Algorithm tor Distributed Model (2/2)

centralized model distributed model
y:Aw_|_fv _yl_ | Al ] _’Ul_
| = ; 7 R
YK - A VK |
AMP algorithm AMP Algorithm
s(t) =y — Az(t) Sk(t) =y — Arx(t)
1 # 1
+Z8t—1<n( r(t—1);6%(t—1))) +Zskt—1<n( r(t—1);6%(—1)))




Proposed Method: Distributed AMP Algorithm

Summation Propagation

We propose summation propagation to compute

by using the idea of consensus propagation

summation propagation

send the summation of ¢ and
messages from other nodes

— 0
€=t T 649 (62, -0

ZENk\]

* The graph is a tree
* # of iterations > graph diameter

K
» All nodes obtain the summation ch
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Simulation Result

Graph Structure

number of nodes: K = 50
graph diameter: 6




Simulation Result

15/17

Problem Settings (Sparse Vector Reconstruction)

N
unknown sparse vector & € R probability distribution (unknown):

i p(zn) = g(zn) + (1 = q)(zn)
‘‘‘‘ S ‘:" Ax_q parameter
‘Al ‘?42 Ak "‘.‘ V’“‘ probability density function
""" & i * of standard Gaussian distribution

X is sparse when q is large

communications :
link V

measurement matrix: A; € RMsx
measurement vector: y, = Apx + v, € RM*



Simulation Result 16/17

MSE for Sparse Vector Reconstruction

(Mean-Square-Error)

# of iterations in
summation propagation

——centralized AMP ]
I L distributed AMP (T" =6)
1071} - — distributed AMP (17" =5) -

N = 1000
M =6
o2 =0.1

g = 0.9

MSEs
at K = 50 nodes
when T =4

MSEs
at K = 50 nodes
when T/ =5

MSE

number of iterations t



Simulation Result

MSE for S

(Mean-Square-Error)

16/17

parse Vector Reconstruction

# of iterations in

100 _ | summation propagation
: ——centralized AMP |
-------- distributed AMP (7" =6) |V = 1000
101 | - - distributed AMP (T =5) | Me=0
. | P (T —4) o2 =0.1
.......................................................................................... q - 0.95

....-.
[ ]
O RO NN NN N NN N NG NN NN OE NN NN NG NN ENOEE NN NN I N NN E NN EEOEE NN NN NN NN NG EEEEEOEEEEEEG

Yo gn
n
.....l.l-lIIII.IIIII-IIIII.IIIII.IIIIIl-IIIII.IIIII-IIIIII-IIIII‘IIIII— llllll

MSEs
at K = 50 nodes
when T/ =4

MSEs
at K = 50 nodes
when T/ =5

When T’ = 6 (graph diameter),

the performance is the same as
. . the centralized AMP algorithm
number of iterations t
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Conclusion

Purpose of This Study

oropose a fully distributed AMP algorithm,
which does not require any fusion node

obtain update equations of the AMP algorithm
for distributed measurements

local computation

at each node >
global computation propose
using communications for the global computation

@ show the validity of the proposed algorithm via computer simulation

St e Wiley Ak + extensic?n for g.generalized.AI\/IP algorithm
4 comparison with conventional methods







Appendix

Problem Settings (Binary Vector Reconstruction)

We can apply the AMP algorithm for binary vector reconstruction
by using another function as n(:; -)

N
unknown vector & € {07 1} probability distribution (known):

R Pr(z, =0) = p1
‘‘‘‘ ) 'o“::‘ AK_1 Pr(xn — ]_) p— p2
corresponding n(-; -):

o p2¢ (@ (rn = 1))
el = p1é (@rn) + pad (@ (Tr — 1))

‘Q
*
‘O
2

measurement matrix: A € RM&*N

measurement vector: Yy = Arx + vi, € R Mk



Appendix

Success Rate for Binary Vector Reconstruction

1
] _
; o an
0.81 W , , . K
| 'l o, =1
Q " I T = 50
< 0.6 ' :
— D1 = 0.9 ,' ' P1 = 0.6
P ]
¢ « 2
O I :
g 0.47 ! # of iterations in
0 " summation propagation
0.2+ :’ ——cent. AMP ]
S dist. AMP (T’ — 6)
- — dist. AMP (T’ — 5)
O o) | |
0 0.2 0.4 0.6 0.8

/\ (measurement ratio)



