OCT VOLUMETRIC DATA RESTORATION VIA PRIMAL-DUAL PLUG-AND-PLAY METHOD

$\frac{\text{S. Muramatsu}^{1,4}}{\text{T. Ota}^{3,4}}, \text{F. Nin}^{3,4}, \text{H. Hibino}^{3,4}$

¹Faculty of Eng., Niigata Univ. ²IIR, Tokyo Institute of Tech. ³School of Medicine, Niigata Univ. ⁴AMED, AMED-CREST

Apr. 20, 2018

Contents

Introduction

Overview of MS en-face OCT

- Device Configuration
- Observation Model

Opposed Restoration Method

- Problem Setting
- Restoration Model
- Restoration Algorithm

Performance Evaluation

- Simulation
- Experimental Results

2 Overview of MS en-face OCT

- Device Configuration
- Observation Model

3 Proposed Restoration Method

- Problem Setting
- Restoration Model
- Restoration Algorithm

Performance Evaluation

- Simulation
- Experimental Results

Background

Auditory mechanism in cochlea is unclear. .: Never observed in-vivo

- Sensory epithelium in a living animal has strong nonlinear characteristics, which cannot be seen in dead animals.
- Need understanding the mechanism for science and medicine
- Try to observe sensory epithelial vibration in vivo

Figure: Structure of Sensory Epithelium

We develop a multifrequency-swept (MS) full-field (*en-face*) optical coherence tomography (OCT) device.

Why MS en-face OCT?

Figure: Conventional SD-OCT

S. Muramatsu et al. (Niigata Univ.)

э.

Why MS en-face OCT?

Problem & Purpose

Problem

- Microscope expands the light spatially.
 - \longrightarrow Intensity becomes weak and S/N degrades.
- In addition to denoising, interference fringe should be removed.
 - \longrightarrow Inverse problem with band-pass type mesurement process

Our previous work adopted ISTA as denoiser [APSIPA ASC 2015].

Pros No matrix inversion is required.

Cons Denoiser is limited and hard constraint is inavailable.

Purpose

Gain the performance by updating the MODEL and ALGORITHM

Hard Constraint & Variety of Denoiser

2 Overview of MS en-face OCT

- Device Configuration
- Observation Model

3 Proposed Restoration Method

- Problem Setting
- Restoration Model
- Restoration Algorithm

Performance Evaluation

- Simulation
- Experimental Results

Device Configuration

Figure: Illustration of responses

- Generate optical comb from broadband SLD light source
- Scan depth by controlling interference peak with Piezo actuator
- Separate the optical comb with a beam splitter
- Expand field of view with objective lens
- Acquire interference fringe between reflected lights

Observation Model

We approximate the interference by the following coherence function.

Cosine-modulated Gaussian function

$$p[\mathbf{m}] = \alpha \delta[m_{\mathrm{x}}] \delta[m_{\mathrm{y}}] \exp\left(-\frac{m_{\mathrm{z}}^2}{2\sigma_{\mathrm{p}}^2}\right) \cos\left(\omega_{\mathrm{p}} m_{\mathrm{z}}\right), \ \mathbf{m} \in \mathbb{Z}^3$$

Figure: Discrete model of coherence function.

- Standard deviation: $\sigma_{\rm p}=2$
- Angular Freq.: $\omega_{
 m p} = 0.4\pi$
- Amplitude α is set so that $\sigma_1(\mathbf{P}) = 1$.

(**P** is the convolution matrix, and $\sigma_1(\cdot)$ denotes the largest singular value.)

Overview of MS en-face OCT

- Device Configuration
- Observation Model

Opposed Restoration Method

- Problem Setting
- Restoration Model
- Restoration Algorithm

Performance Evaluation

- Simulation
- Experimental Results

Reflection \mathbf{u} is bounded and is sparsely represented through Dictionary \mathbf{D} .

Reflection \mathbf{u} is bounded and is sparsely represented through Dictionary \mathbf{D} .

$$\mathbf{v} = \mathbf{P}\mathbf{u} + \mathbf{w}$$

 $\mathbf{u} = \mathbf{D}\mathbf{s} \in [-1, 1]^N$

S. Muramatsu et al. (Niigata Univ.)

MSIPLab

Reflection \mathbf{u} is bounded and is sparsely represented through Dictionary \mathbf{D} .

Assumption	Problem Setting
$\mathbf{v} = \mathbf{P}\mathbf{u} + \mathbf{w}$	$\hat{\mathbf{s}} = \arg\min_{\mathbf{s}} \frac{1}{2} \ \mathbf{P}\mathbf{D}\mathbf{s} - \mathbf{v}\ _2^2 + \lambda \mathcal{R}(\mathbf{s}), \text{ s.t. } \mathbf{u} \in [-1, 1]^N$
$\mathbf{u} = \mathbf{Ds} \in [-1, 1]^{n}$	$\hat{\mathbf{u}} = \mathbf{D}\hat{\mathbf{s}}$

We propose to adopt Primal-Dual Plug-and-Play (PDPnP) method.

Restoration Model

PDPnP solves the following problem [S. Ono, SPL2017]:

$$\hat{\boldsymbol{x}} = \arg\min_{\boldsymbol{x} \in \mathbb{R}^{L}} \mathcal{R}(\boldsymbol{x}) + \mathcal{F}_{\boldsymbol{v}}(\boldsymbol{\Phi}\boldsymbol{x}) \text{ s.t. } \boldsymbol{\Psi}\boldsymbol{x} \in \mathcal{C},$$

- $\mathcal{R}(\cdot)$: Regularizer
- $\mathcal{F}_{\mathbf{v}}(\cdot)$: Data fidelity
- Φ: Linear measurement Proc.
- Ψ : Linear generation Proc.
- C: Hard constraint

Restoration Model

PDPnP solves the following problem [S. Ono, SPL2017]:

$$\hat{\boldsymbol{x}} = \arg\min_{\boldsymbol{x} \in \mathbb{R}^{L}} \mathcal{R}(\boldsymbol{x}) + \mathcal{F}_{\boldsymbol{v}}(\boldsymbol{\Phi}\boldsymbol{x}) \text{ s.t. } \boldsymbol{\Psi}\boldsymbol{x} \in \boldsymbol{C},$$

- $\mathcal{R}(\cdot)$: Regularizer \leftarrow Determined by pluggable Gaussian denoiser
- $\mathcal{F}_{\mathbf{v}}(\cdot)$: Data fidelity $\longleftarrow \mathcal{F}_{\mathbf{v}}(\cdot) = (2\lambda)^{-1} \| \cdot \mathbf{v} \|_2^2$ (AWGN)
- Φ : Linear measurement Proc. \leftarrow PD (Coherence Fcn. & Dic.)
- Ψ : Linear generation Proc. \leftarrow Determined by pluggable Dic. D
- C: Hard constraint $\leftarrow [-1,1]^N$ (Range of reflection)

Restoration Model

PDPnP solves the following problem [S. Ono, SPL2017]:

$$\hat{\boldsymbol{x}} = \arg\min_{\boldsymbol{x} \in \mathbb{R}^{L}} \mathcal{R}(\boldsymbol{x}) + \mathcal{F}_{\boldsymbol{v}}(\boldsymbol{\Phi}\boldsymbol{x}) \text{ s.t. } \boldsymbol{\Psi}\boldsymbol{x} \in \boldsymbol{C},$$

- $\mathcal{R}(\cdot)$: Regularizer \leftarrow Determined by pluggable Gaussian denoiser
- $\mathcal{F}_{\mathbf{v}}(\cdot)$: Data fidelity $\leftarrow \mathcal{F}_{\mathbf{v}}(\cdot) = (2\lambda)^{-1} \| \cdot \mathbf{v} \|_2^2$ (AWGN)
- Φ : Linear measurement Proc. \leftarrow PD (Coherence Fcn. & Dic.)
- Ψ : Linear generation Proc. \leftarrow Determined by pluggable Dic. D
- C: Hard constraint $\leftarrow [-1,1]^N$ (Range of reflection)

Problem setting (revisited)

$$\hat{\mathbf{s}} = \arg\min_{\mathbf{s}\in\mathbb{R}^L} \frac{1}{2} \|\mathbf{P}\mathbf{D}\mathbf{s} - \mathbf{v}\|_2^2 + \lambda \mathcal{R}(\mathbf{s}), \text{ s.t. } \mathbf{D}\mathbf{s} \in [-1, 1]^N$$

イロト イポト イヨト イヨト

Restoration Algorithm

Algorithm 1 Primal-Dual Plug-and-Play (PDPnP) Image Restoration

nput:
$$\mathbf{x}^{(0)}$$
, $\mathbf{y}_{1}^{(0)}$, $\mathbf{y}_{2}^{(0)}$ % $\mathbf{x} = \mathbf{s}$
Dutput: $\mathbf{x}^{(n)}$
1: while a stopping criterion is not satisfied **do**
2: $\mathbf{x}^{(n+1)} = \mathfrak{G}_{\mathcal{R}} \left(\mathbf{x}^{(n)} - \gamma_1 \left(\Phi^{\mathsf{T}} \mathbf{y}_{1}^{(n)} + \Psi^{\mathsf{T}} \mathbf{y}_{2}^{(n)} \right), \sqrt{\gamma_1} \right)$ % Regularized GDN
3: $\mathbf{y}_{1}^{(n)} \leftarrow \mathbf{y}_{1}^{(n)} + \gamma_2 \Phi \left(2\mathbf{x}^{(n+1)} - \mathbf{x}^{(n)} \right)$ % $\Phi = \mathsf{PD}$
4: $\mathbf{y}_{2}^{(n)} \leftarrow \mathbf{y}_{2}^{(n)} + \gamma_2 \Psi \left(2\mathbf{x}^{(n+1)} - \mathbf{x}^{(n)} \right)$ % Dictonary $\Psi = \mathsf{D}$
5: $\mathbf{y}_{1}^{(n+1)} = \mathbf{y}_{1}^{(n)} - \gamma_2 \mathrm{Prox}_{\frac{1}{\gamma_2} \mathcal{F}_{\mathbf{v}}} \left(\frac{1}{\gamma_2} \mathbf{y}_{1}^{(n)} \right)$ % $\mathcal{F}_{\mathbf{v}}(\cdot) = (2\lambda)^{-1} \| \cdot - \mathbf{v} \|_{2}^{2}$
6: $\mathbf{y}_{2}^{(n+1)} = \mathbf{y}_{2}^{(n)} - \gamma_2 P_{C} \left(\frac{1}{\gamma_2} \mathbf{y}_{2}^{(n)} \right)$ % $P_{C}(\cdot) = P_{[-1,1]^{N}}$
7: $n \leftarrow n+1$
8: end while

Generalized for generative process, Ψ , from the original

S. Ono, "Primal-dual plug-and-play image restoration," IEEE Signal Processing Letters, vol.24, no.8, pp.1108–1112, Aug. 2017.

S. Muramatsu et al. (Niigata Univ.)

ICASSP2018@Calgary

Apr. 20, 2018 13 / 20

2 Overview of MS en-face OCT

- Device Configuration
- Observation Model

3 Proposed Restoration Method

- Problem Setting
- Restoration Model
- Restoration Algorithm

Performance Evaluation

- Simulation
- Experimental Results

Simulation

- Z position of reflective XY surfaces are randomly generated.
- Reflection ratio of each surface is randomly set in [-1, 1].
- AWGN with zero mean and $\sigma_{\rm w}=$ 0.1 is assumed.

MSIPIAb

Simulation

Simulation

Dictionary		
IDNT	Identity	
UDHT	Undecimated Haar Trans.	
Gaussian Denoiser		
SFTH	Soft-thresholding	

SETH	Soft-thresholding
BM4D	[M. Maggioni, TIP2013]

- PSNR vs Reflective surface generation ratios
- MSEs of 5 trials are averaged and converted to PSNR.

PDPnP with BM4D shows the best performance. The significance of dictionary is also indicated with less computation.

Restoration experiment of sensory epitherlium

Observation through MS en-face OCT ($244 \times 240 \times 1024$ voxels)

2 Overview of MS en-face OCT

- Device Configuration
- Observation Model

3 Proposed Restoration Method

- Problem Setting
- Restoration Model
- Restoration Algorithm

Performance Evaluation

- Simulation
- Experimental Results

Conclusions

Conclusions

- Proposed to apply PDPnP to OCT data restoration
 - Realized removal of noise and interference fringe simultaneously.
 - No matrix inversion is required.
 - Hard constraint is available.
 - Arbitrary Gaussian denoiser can be pluged in.
- Verified the significance through
 - Simulation for artificial data
 - Experiment on observation via MS en-face OCT
- Future works include
 - Tomographic acquisition of vibration
 - Estimation of measurement process P
 - Construction of synthesis dictionary **D**
 - Examination of appropriate noise model

Acknowledgement

This work is supported by AMED-CREST and JSPS KAKENHI (JP16H03164).