

• 1	Usually lattice-rescoring uses n -gram
8	approximation to limit search space;
• 1	We propose a heuristics that finds more
]	promising arcs to expand, and use it for
ł	pruning;
. (Complexity of the algorithm grows
ĉ	approximately (empirically) linear with
J	<i>n</i> -gram order, compared with exponential
Ę	growth of the baseline algorithm;
	4X and 10X faster for 4-gram and 5-gram;
	The heuristics also consistently improves
T	WER;
∎ r	The evaluation is done with TensorFlow
]	RNNLMs. We open source the integration of
Γ	TensorFlow to Kaldi.

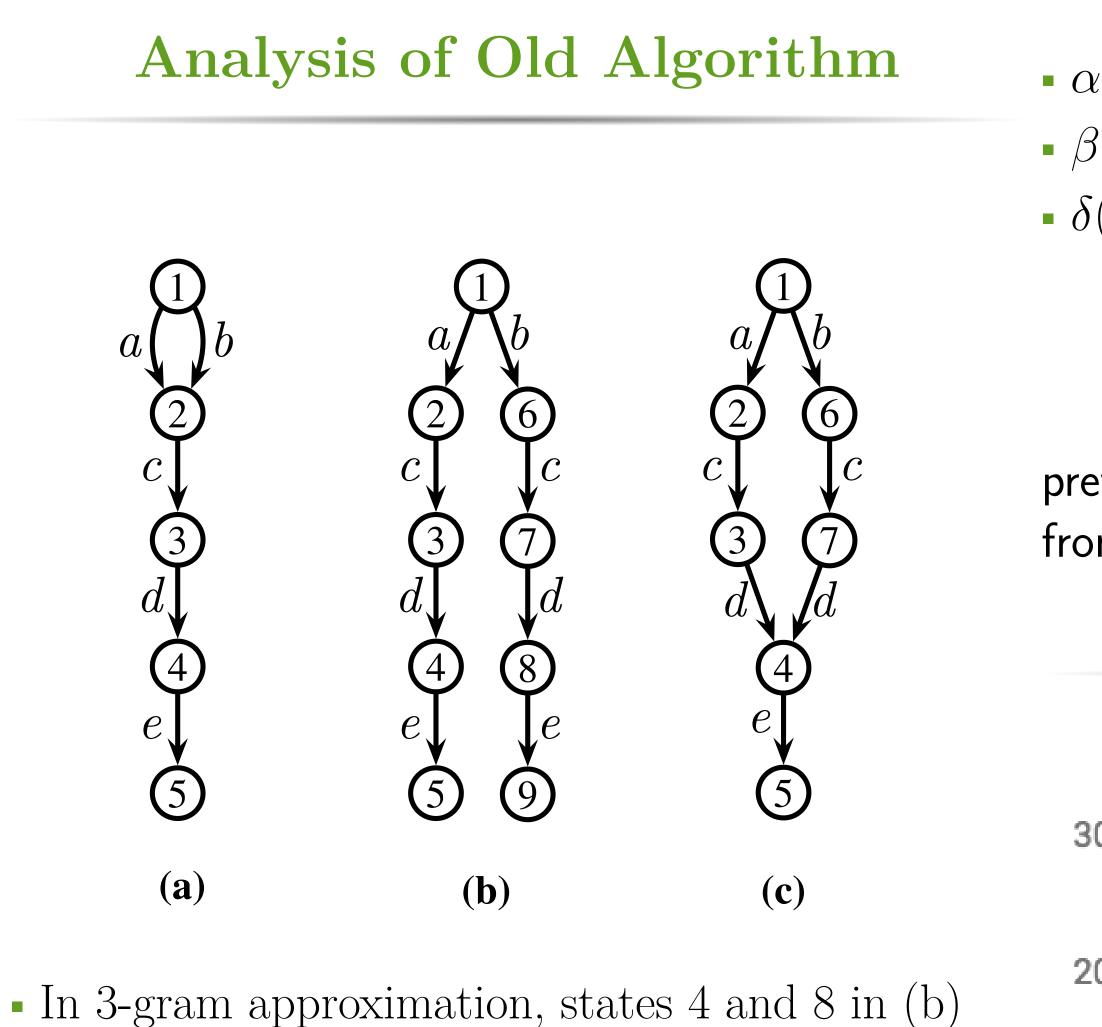
- In speech recognition, decoding is usually done on a static decoding graph compiled from an *n*-gram;
- RNNLM rescoring helps further reduce WERs by (partially) replacing LMs weights on a decoded lattice;
- A naive implementation to rescore the lattice is too costly – it runs exponentially w.r.t. lattice-depth;
- An *n*-gram approximation algorithm is commonly used in order to limit the search space.

Contact Information

- Web: http://www.hainanxv.com
- Email: hxu31@jhu.edu

A Pruned RNNLM Lattice-Rescoring Algorithm for Automatic Speech Recognition

Hainan Xu^{1,2}, Tongfei Chen¹, Dongji Gao¹, Yiming Wang¹, Ke Li¹, Nagendra Goel³, Yishay Carmiel², Daniel Povey¹, Sanjeev Khudanpur¹ ¹Center for Language and Speech Processing, Johns Hopkins University; ²IntelligentWire, Seattle WA; ³Go-Vivace Inc., USA



- are merged as state 4 in (c);
- state 4 encodes history of either (a, c, d) or (b, c, d). The choice is arbitrary, and affects the weight computed for $p(e \mid 4)$.

Pruned Algorithm

- For each arc to be expanded, we compute a score reflecting how likely this arc will become part of the best-path;
- Arcs that are not very promising (out of the beam) are not expanded;
- Arcs that are more promising get expanded first, so that output lattice states encode "better" history.

Heuristic

• The heuristic is computed as

$$H(c) = \alpha(c) + \beta(a) + \delta(c) \tag{1}$$

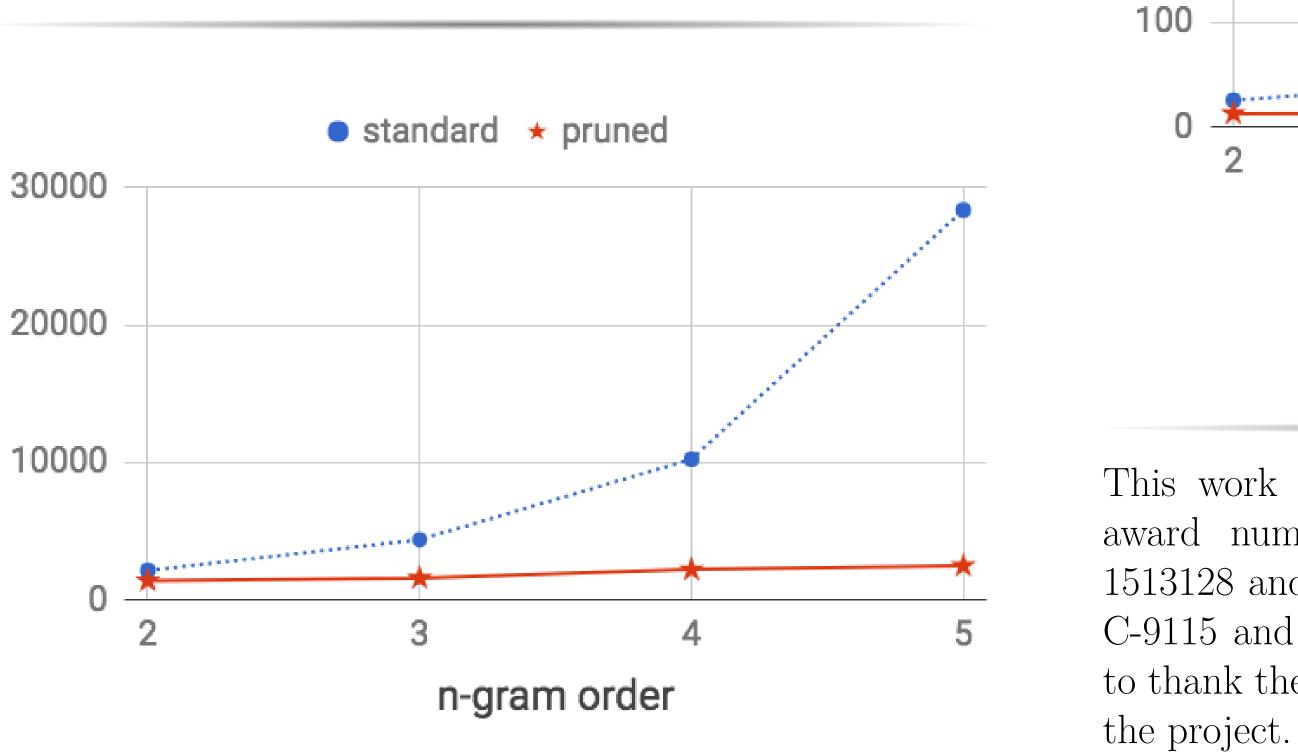
- c: a state in the output lattice;
- *a*: the corresponding state in the input lattice;

• $\alpha(c)$ is the forward-cost for c in the output lattice • $\beta(a)$ is the backward-cost for a in the input lattice • $\delta(c)$ is an "expectation" of $\beta(c) - \beta(a)$

$$\delta(c) = \begin{cases} \beta(c) - \beta(a), & \beta(c) < +\infty \\ \delta(\operatorname{prev}(c)), & \beta(c) = +\infty \end{cases}$$
(2)

prev(c) is the previous state of c on the best path from start to c.

Lattice-rescoring Speed



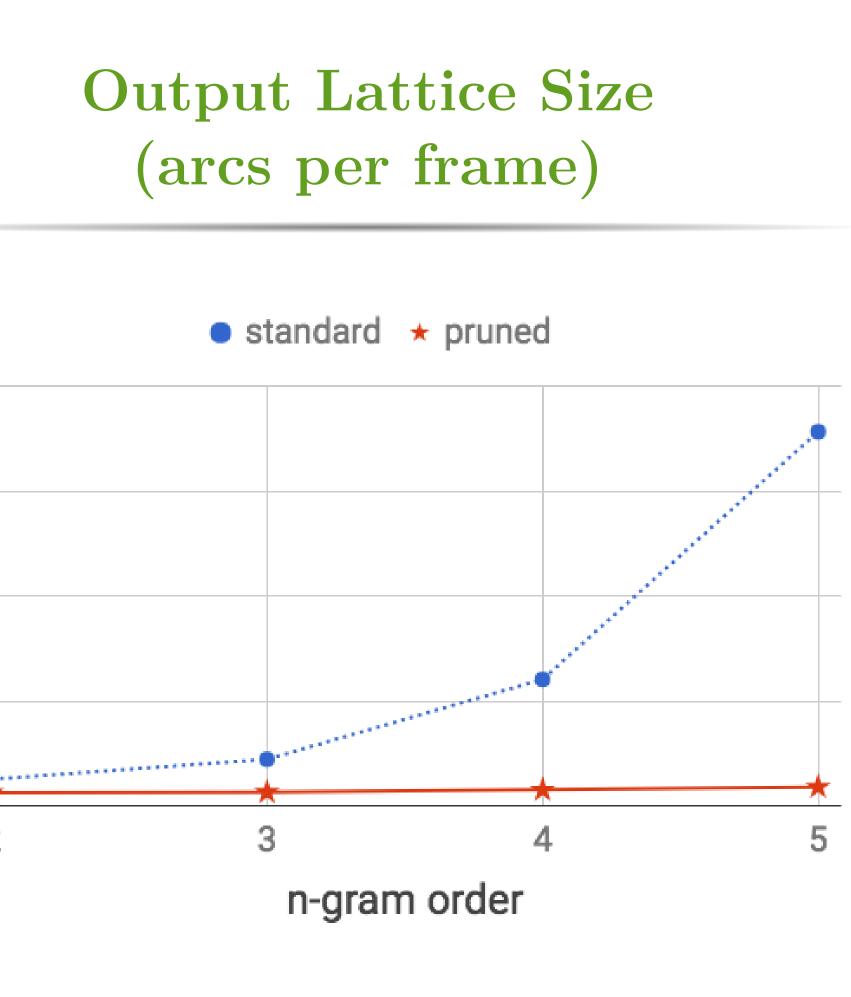
Word-error-rate

400

300

200

ARPA RNNLM rescoring with n -gram ap							approxim	nation		
Corpus	Test set	baseline 2-gram		am	3-gram		4-gram			
			standard	pruned	standard	pruned	standard	pruned		
AMI-IHM	dev	24.2	24.5	24.0	23.7	23.4	23.4	23.3		
(0.5)	eval	25.4	25.8	25.0	24.6	24.4	24.3	24.2		
SWBD	swbd	8.1	8.6	8.2	7.4	7.2	7.2	7.1		
(0.8)	eval2000	12.4	12.9	12.3	11.7	11.5	11.5	11.3		
WSJ	dev93	7.6	7.2	6.9	6.4	6.2	6.4	6.2		
(0.8)	eval92	5.1	4.6	4.2	4.1	3.9	3.9	3.8		
	test-clean	6.0	5.5	5.1	4.9	4.8	4.8	4.7		
LIB	test-other	15.0	14.0	13.2	12.7	12.4	12.4	12.3		
(0.5)	dev-clean	5.7	5.0	4.8	4.4	4.3	4.3	4.3		
	dev-other	14.5	13.7	12.9	12.3	12.0	11.9	11.7		
Table 1: WER of Lattice-rescoring of Different RNNLMs										



Acknowledgements

This work was partially supported by DARPA LORELEI award number HR0011-15-2-0024, NSF Grant No CRI-1513128 and IARPA MATERIAL award number FA8650-17-C-9115 and by IntelligentWire. The authors would also like to thank the TensorFlow team at Google for their help during