AASP-P11.6

End-to-end Sound Source Enhancement using Deep Neural Network in the Modified Discrete Cosine Transform Domain

<u>Yuma Koizumi¹, Noboru Harada¹, Yoichi Haneda², Yusuke Hioka³, Kazunori Kobayashi¹</u> ¹ NTT Media Intelligence Laboratories, Japan, ² The University of Electro-Communications, Japan, ³ The University of Auckland, New Zealand

Goal: retrieve target source from single channel observed signal recorded in noisy environment **Problem**: real-valued T-F mask in DFT-domain cannot manipulate both amplitude and phase of the spectrum

L: Monaural source enhancement	3: Proposed method
] Retrieving target source s_t from single channel noisy observed signal x_t in real-time] Time-frequency (T-F) mask has been used $x_t = s_t + n_t$ DFT $X_{\omega,k} = S_{\omega,k} + N_{\omega,k}$ Mask $\hat{S}_{\omega,k} = G_{\omega,k}X_{\omega,k}$, where $0 \leq G_{\omega,k} \leq 1$	 DNN estimates T-F masks Pros manipulate both spectrum by usin DNN output unit fewer than those
2: DNN-based T-F mask estimation	 Cons I directly manipulation directly di
1 DNN have been used as regression function to estimate (real-valued) T-F mask $\hat{G}_{k} = \mathcal{M}(\phi_{k} \Theta) \qquad \qquad$	■ Whole procedure of source written using real-valued ⇒ enable to simultaneously domain aliasing, by resulting end-to-end system $\mathcal{J}(\Theta) = \sum_{k=2}^{K-1} \mathbf{s}_k - \hat{\mathbf{s}}_k _1, \hat{\mathbf{s}}_k = \mathbf{O}$
 Real-valued T-F mask in DFT-domain cannot manipulate phase spectrum Any real-valued T-F mask cannot perfectly retrieve S_{w,k} when phase spectrum of S_{w,k} does not coincide with N_{w,k} To estimate complex-valued T-F mask, more complicated DNN is required [2] 	$\begin{array}{c} \text{Op-out}\\ \text{IMDCT}\\ \text{IMDCT}$
dea: to use more efficient signal representation than DFT spectrum for DNN-based source enhancement Which domain have high affinity for DNN-based source enhancement?	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

$$\mathcal{J}^{\text{PSA}}(\Theta) = \sum_{k=1}^{K} ||\mathbf{S}_k - \mathcal{M}(\boldsymbol{\phi}_k|\Theta) \odot$$

Theme: Which domain have high affinity for DNN-based source enhancement? **Proposed**: (1) using MDCT instead of DFT and (2) extending DNN-based source enhancement to end-to-end system by using real-valued T-F masks **Result**: several kinds of objective scores were significantly higher than SOTA methods

□ Speech enhancement in several noise & SNR cond. ■ Training: 6,640 Japanese speech + CHiME-3 noise data (augmented to several SNR cond.) ■ Test: 300 Japanese speech + 4 environmental noise at SNR levels of -6, 0, 6, and 12 dB

- DNN: 4 hidden layers with 512 hidden units ■ LSTM: 2 LSTM-layers with 512 cells Activation: rectified linear unit (ReLU) Optimizer: Adam with layer-by-layer training
 - SDR STOI PESQ Compared with three 64.7 SOTA methods 1.87 PSA 5.57 75.1 cIRM 75.6 4.58 1.77 - PSA [1] *5.97 *76.5 *1.94 Proposed 2.02 *6.73 78.7 PSA Real-valued T-F mask in cIRM 1.95 77.9 5.35 DFT-domain *79.6 2.03 6.43 Proposed 83.3 1.95 8.40 cIRM [2] 2.38 85.9 PSA 10.61 cIRM 9.84 86.1Complex-valued T-F mask *2.50 Proposed *11.70 *89.0 in DFT-domain 2.54 PSA 11.86 89.5 cIRM 88.3 10.55 2.46 - SEGAN [4] 2.57 *12.09 *90.6 Proposed Time-domain end-to-end 14.06 2.39 92.2 92.3 2.76 PSA 15.02 source enhancement cIRM 92.2 2.72 13.58 *16.63 *94.8 *2.92 Proposed Significantly PSA 16.40 94.8 2.92 cIRM 14.56 93.8 2.87 outperformed *16.97 *95.5 *2.97 Proposed conventional methods 2.72 95.7 18.73 in terms of SDR, STOI 3.09 PSA 95.9 18.88 and PESQ scores in cIRM 95.3 3.12 16.00 *21.07 *97.3 *3.30 Proposed almost all SNR 3.25 PSA 97.2 20.60 conditions ($\alpha = 0.05$) 3.22 cIRM 96.4 17.43 *21.50 *97.7 *3.34 Proposed

MDCT has high affinity for **DNN-based source enhancement**

5: Selected references

[1] H. Erdogan +, ICASSP, 2015. [2] D. S. Williamson +, IEEE Trans. ASLP, 2016. [3] F. Keuch+, WASPAA, 2007. [4] S. Pascual +, Interspeech, 2017.