On Sequential Random Distortion Testing of Non-Stationary Processes¹

Prashant Khanduri $^{\dagger},$ Dominique Pastor $^{\ddagger},$ Vinod Sharma* and Pramod K. Varshney †

[†]EECS department, Syracuse University, Syracuse, NY, USA [‡]IMT Atlantique, Lab-STICC, Univ. Bretagne Loire, Brest, France *ECE department, IISc, Bangalore, India

¹This work was supported by ARO grant W911NF-14-1-0339.

- ► Standard hypothesis testing vs Sequential testing
- ▶ Random Distortion Testing (RDT), Block-RDT

► A new framework: SeqRDT

- Contributions
- Model
- Analysis
- Simulations
- ► Summary and future work

To accept or reject the null hypothesis: \mathcal{H}_0 vs \mathcal{H}_1

- ► Standard Testing: Collect a fixed number of samples
 - Bayesian, Min-max or Neyman-Pearson hypothesis testing
 - Procedures are designed to minimize some cost
- ► Sequential Testing ⇒ Goal: To make a decision faster on an average with sufficient performance guarantees
 - 1. Accept null hypothesis and stop the test
 - 2. Reject null hypothesis and stop the test
 - 3. Make no decision and collect another observation
- Continue taking observations unless a confident decision can be made

▶ When to stop the sequential test?

 Answer: When the probability of false alarm and the probability of missed detection are under certain pre-specified levels (α and β resp.)

Standard Likelihood ratio test (LRT)

- \blacktriangleright Consider the two hypotheses as \mathcal{H}_0 and \mathcal{H}_1
- Consider the observations $\{Y_n\}$ for $n \in \mathbb{N}$
- ► The LRT yields

$$\Lambda_n(Y_1,\ldots,Y_n) = \log \frac{p_{Y_1,\ldots,Y_n}(Y_1,\ldots,Y_n;H_1)}{p_{Y_1,\ldots,Y_n}(Y_1,\ldots,Y_n;H_0)} \underset{\mathcal{H}_0}{\overset{\mathcal{H}_1}{\gtrless}} \lambda$$

where, λ is the threshold chosen according to the type of test

SPRT has the following form:

- ▶ If $\Lambda_n \ge \lambda_H$, decide \mathcal{H}_1
- ► If $\Lambda_n \leq \lambda_L$, decide \mathcal{H}_0
- ▶ If $\lambda_L < \Lambda_n < \lambda_H$, take another observation to obtain Λ_{n+1}
- ► Repeat

The thresholds $\lambda_L = \log \frac{\beta}{1-\alpha}$ and $\lambda_H = \log \frac{1-\beta}{\alpha}$

- ► The probability of false alarm and missed detection stay under the specified levels α and β respectively
- ► SPRT is optimal

Random Distortion Testing (RDT)

► Random Distortion Testing (RDT)²

- Binary hypothesis testing problem
- Tests whether a signal lies within a ball of radius $\boldsymbol{\tau}$
- ▶ Block formulation of RDT: Block-RDT³
 - Tests whether the signal mean lies within a ball of radius τ

Figure 1: RDT.

Figure 2: Block RDT.

²Pastor et al., IEEE TSP, 2013. ³Pastor et al., ICASSP, 2015.

Goal

► Standard sequential testing approaches

- Based on LRT: Requires the knowledge of signal distributions
- Assume the observation samples to be i.i.d.
- Prone to model mismatch errors and hence are not robust

Advantages of RDT:

- The distributions of signal under each hypothesis is unknown
- Samples need not be i.i.d.
- Is robust to model mismatches

Question:

• Can we provide sufficient performance guarantees for the sequential testing framework?

► A new sequential testing framework: SeqRDT

- Makes a decision faster compared to Block RDT
- Analysis of the proposed algorithm
- Preliminary approaches^{4,5}

Advantages

- Non-parametric sequential mean testing framework
- Is capable of testing non-i.i.d. signals with unknown sample distributions
- Robust to model mismatches

⁵Nguyen et al., BMC BioMedical Engineering OnLine, 2012.

⁴Nguyen et al., PhD Dissertation, Telecom Bretagne, 2012

Model

- ▶ Idea: Associate with each hypothesis a criterion
- Proposed in the form of Random distortion testing (RDT)⁶ and *Block*RDT⁷

$$\begin{cases} \underline{Observation}: Y = S + X\\ \\ \text{with} &\begin{cases} S = (S_n)_{n \in \mathbb{N}}, \\ X_1, X_2, \dots \stackrel{\text{iid}}{\sim} \mathbb{F}, \ \mathbb{F} \text{ unknown}, \\ \\ \mathbb{E} [X_1] = 0 \text{ and } \operatorname{Var} (X_1) = 1\\ S \text{ and } X \text{ are independent}, \\ \\ \exists N_0 \in \mathbb{N}, \begin{cases} \mathcal{H}_0 : \forall N \geqslant N_0, 0 \leqslant |\bar{S_N} - \xi_0| \leqslant \tau \text{ (a-s)}\\ \mathcal{H}_1 : \forall N \geqslant N_0, \tau < |\bar{S_N} - \xi_0| \leqslant \tau_H \text{ (a-s)} \end{cases} \end{cases} \\ \text{where, } \tau \in [0, \infty). \end{cases}$$

⁶Pastor et al., IEEE TSP, 2013. ⁷Pastor et al., ICASSP, 2015.

Model: Intuition

Figure 3: Testing model for SeqRDT

Assumption

• Assumption 1: [(a-s) convergence of $\bar{S_N}$]

$$\exists \, \bar{S_{\infty}} \,$$
 such that $\lim_{N o \infty} \bar{S_N} = \bar{S_{\infty}} \,$ (a-s)

for which exist $\tau^- \in [0, \tau)$ and $\tau^+ \in (\tau, \infty)$ such that:

$$\left\{ \begin{array}{ll} \text{Under } \mathcal{H}_0: & |\bar{S_\infty} - \xi_0| \leqslant \tau^- \text{ (a-s)}, \\ \text{Under } \mathcal{H}_1: & |\bar{S_\infty} - \xi_0| \geqslant \tau^+ \text{ (a-s)}, \end{array} \right.$$

Remark: Note that the two tolerances τ^- and τ^+ ensure that the non-parametric criterion $|\overline{S}_N - \xi_0|$ converges away from the tolerance τ as the number of samples N grows.

SeqRDT

The stopping time T for the test is defined as

$$T = \min \{ N \in \mathbb{N} : \mathcal{D}_{M}(N) \neq \infty \},$$

with:
$$\begin{cases} \mathcal{D}_{M}(1) = \mathcal{D}_{M}(2) = \ldots = \mathcal{D}_{M}(M) = \infty, \\\\ \text{for } N > M, \ \mathcal{D}_{M}(N) = \begin{cases} 0 \quad \text{if } |\bar{Y}_{N} - \xi_{0}| \leq \lambda_{L}(N), \\\\ \infty \text{if } \lambda_{L}(N) < |\bar{Y}_{N} - \xi_{0}| \leq \lambda_{H}(N), \\\\ 1 \quad \text{if } |\bar{Y}_{N} - \xi_{0}| > \lambda_{H}(N). \end{cases}$$

where, $\lambda_L(N) \leq \lambda_H(N)$.

- ► False Alarm: $\mathbb{P}_{FA}(\mathcal{D}_M) \stackrel{\text{def}}{=} \mathbb{P} \left[\mathcal{D}_M(T) = 1 \right]$ under \mathcal{H}_0
- ▶ Missed Detection: $\mathbb{P}_{MD}(\mathcal{D}_M) \stackrel{\text{def}}{=} \mathbb{P} \left[\mathcal{D}_M(\mathcal{T}) = 0 \right]$ under \mathcal{H}_1

Design thresholds such that: $\mathbb{P}_{FA}(\mathcal{D}_M) \leq \alpha$ and $\mathbb{P}_{MD}(\mathcal{D}_M) \leq \beta$

Thresholds

Choose:

$$\lambda_H(N) = \lambda_{\alpha}(\tau\sqrt{N})/\sqrt{N}$$
 and $\lambda_L(N) = \lambda_{1-\beta}(\tau\sqrt{N})/\sqrt{N}$

where, given $\gamma \in (0,1)$ and $ho \in [0,\infty)$, $\lambda_\gamma(
ho)$ satisfies

 $Q_{1/2}(\rho, \lambda_{\gamma}(\rho)) = \gamma.$

Proposition

For $\alpha, \beta \in (0, 1/2)$, $\tau \in (0, \infty)$ and the thresholds $\lambda_H(N)$ and $\lambda_L(N)$ we have, $\lambda_L(N) \leq \lambda_H(N)$, for all $N \in \mathbb{N}$.

Can this choice of thresholds give some performance guarantees?

Behaviour of $\lambda_L(N)$ and $\lambda_H(N)$

Figure 4: $\lambda_L(N)$ and $\lambda_H(N)$ vs N for $\alpha = \beta = 0.1$ and $\tau = 2$.

Theorem (Asymptotics: T, $\mathbb{P}_{FA}(\mathcal{D}_M)$ and $\mathbb{P}_{MD}(\mathcal{D}_M)$) For $\alpha, \beta \in (0, \frac{1}{2})$ and thresholds $\lambda_L(N)$ and $\lambda_H(N)$, (*i*) we have

$$\mathbb{P}\left[T = \infty \right] = 0$$
 under \mathcal{H}_0 and \mathcal{H}_1 ,

(ii) and as $M \to \infty$, we have

$$\lim_{M\to\infty}\mathbb{P}_{\mathrm{FA}}(\mathcal{D}_M)=\lim_{M\to\infty}\mathbb{P}_{\mathrm{MD}}(\mathcal{D}_M)=0$$

Experimental Results and Discussion

▶ Signal: $S_n = \xi_i + \Delta_n$ under \mathcal{H}_i for $i \in \{0, 1\}$

• Δ_n s: Distortions with unknown distribution

The above inequalities imply the following

$$\begin{cases} \text{under } \mathcal{H}_0: \ 0 \leqslant |\bar{S_N} - \xi_0| \leqslant \tau^- < \tau, \forall N \geqslant 1, \\ \text{under } \mathcal{H}_1: \ \tau < \tau^+ \leqslant |\bar{S_N} - \xi_0| \leqslant \tau_H, \forall N \geqslant 1. \end{cases}$$

Simulations

$\alpha = \beta = 0.001$					
$SDR \left(=\frac{SNR}{\tau}\right) (dB)$		6.02	7.96	9.54	12.00
Seq-RDT, $M = 0$	T	3.98	3.28	3.04	2.90
	$\mathbb{P}_{\mathrm{FA}}(\mathcal{D}_{M})$	3.33×10^{-4}	3.47×10^{-4}	3.19×10^{-4}	3.17×10^{-4}
	$\mathbb{P}_{MD}(\mathcal{D}_M)$	1.24×10^{-4}	5×10^{-6}	5×10^{-6}	0
BlockRDT	N _{B-RDT}	14	7	4	2
	P _{FA} B-RDT	0	0	0	$2.2 imes 10^{-5}$
	P ^{B-RDT}	9.45×10^{-4}	$3.12 imes 10^{-4}$	2.44×10^{-4}	$6.80 imes 10^{-5}$
SPRT	T _{SPRT}	2.44	1.73	1.34	1.05
	P _{FA} SPRT	2.08×10^{-4}	1.59×10^{-4}	1.03×10^{-4}	2.85×10^{-5}
	PMD	2.09×10^{-4}	$1.54 imes 10^{-4}$	$1.03 imes 10^{-4}$	$2.57 imes 10^{-5}$
SPRT-MM	T _{SPRT-MM}	1.57	1.24	1.10	1.01
	P ^{SPRT-MM}	6.2×10^{-3}	$3.5 imes 10^{-3}$	$1.8 imes 10^{-3}$	2.88×10^{-4}
	PMD	6.2×10^{-3}	3.6×10^{-3}	1.8×10^{-3}	3.05×10^{-4}

Table 1: Seq-RDT vs BlockRDT and SPRT for unbounded regime.

- ▶ A robust sequential algorithm for hypothesis testing
- Underlying distributions are unknown
- ▶ No i.i.d assumptions are made over the signals
- ► Ongoing and Future Work
 - Truncated version of SeqRDT: T-SeqRDT
 - Distributed version of SeqRDT: D-SeqRDT
 - Generalization to higher dimensional signals