The Landscape of Non-convex Quadratic Feasibility

Amanda Bower, Lalit Jain, Laura Balzano

Let $P_1, \ldots, P_m \in \mathbb{R}^{n \times n}$. The homogenous quadratic feasibility problem is defined as

find
$$x \in \mathbb{R}^n$$
 (1)
subject to $x^T P_i x > 0$, $\forall i = 1, ..., m$.

Let $P_1, \ldots, P_m \in \mathbb{R}^{n \times n}$. The homogenous quadratic feasibility problem is defined as

find
$$x \in \mathbb{R}^n$$
 (1)
subject to $x^T P_i x > 0$, $\forall i = 1, ..., m$.

A solution to (1) is called a feasible point.

Let $P_1, \ldots, P_m \in \mathbb{R}^{n \times n}$. The homogenous quadratic feasibility problem is defined as

find
$$x \in \mathbb{R}^n$$
 (1)
subject to $x^T P_i x > 0$, $\forall i = 1, ..., m$.

A solution to (1) is called a feasible point.

Example: Feasible region of $x^2 - y^2 > 0$ and $\frac{1}{2}x^2 + \frac{1}{2}y^2 - xy > 0$.

Let $P_1, \ldots, P_m \in \mathbb{R}^{n \times n}$. The homogenous quadratic feasibility problem is defined as

find
$$x \in \mathbb{R}^n$$
 (1)
subject to $x^T P_i x > 0$, $\forall i = 1, ..., m$.

A solution to (1) is called a feasible point.

Example: Feasible region of $x^2 - y^2 > 0$ and $\frac{1}{2}x^2 + \frac{1}{2}y^2 - xy > 0.$ $\begin{pmatrix} x \\ y \end{pmatrix}^T \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} > 0$

Ordinal Embedding (aka non-metric multidimensional scaling): Let $D(\cdot, \cdot)$ be a distance function.

from ordinal information

Ordinal Embedding (aka non-metric multidimensional scaling): Let $D(\cdot, \cdot)$ be a distance function.

Ordinal Embedding (aka non-metric multidimensional scaling): Let $D(\cdot, \cdot)$ be a distance function.

Ordinal embedding: Find $\{x_i \in \mathbb{R}^d\}$ such that

$$||x_i - x_k||_2^2 < ||x_i - x_j||_2^2$$

$$\implies \langle x_i - x_k, x_i - x_k \rangle < \langle x_i - x_j, x_i - x_j \rangle$$

$$\implies 0 < x^T P_{ijk} x,$$

where
$$x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^{nd} \text{ and } P_{ijk} \in \mathbb{R}^{nd \times nd}$$

$$\begin{array}{c} \underbrace{\text{Example}}{\text{in } \mathbb{R}^2:} & \underbrace{0 < \|w - z\|_2^2 - \|w - y\|_2^2}_{\Rightarrow 0 < \langle y, y \rangle + 2\langle w, z - y \rangle - \langle z, z \rangle} \\ \Rightarrow 0 < \langle y, y \rangle + 2\langle w, z - y \rangle - \langle z, z \rangle \\ \Rightarrow 0 < x^T P_{wyz} x \\ x = \begin{pmatrix} w_1 \\ w_2 \\ y_1 \\ y_2 \\ z_1 \\ z_2 \end{pmatrix} & P_{wyz} = \begin{pmatrix} 0 & 0 & -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 & 0 & 1 \\ -1 & 0 & 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 & 0 & -1 \end{pmatrix}$$

find $x \in \mathbb{R}^n$ (1) subject to $x^T P_i x > 0, \quad i = 1, \dots, m$.

find $x \in \mathbb{R}^n$ (1) subject to $x^T P_i x > 0$, $i = 1, \dots, m$.

We formulate (1) as a non-convex, unconstrained optimization problem with the hinge loss:

$$\min_{x \in \mathbb{R}^n} \sum_{i=1}^m \max\{0, 1 - x^T P_i x\}.$$
 (2)

find $x \in \mathbb{R}^n$ (1) subject to $x^T P_i x > 0, \quad i = 1, \dots, m$.

We formulate (1) as a non-convex, unconstrained optimization problem with the hinge loss:

$$\min_{x \in \mathbb{R}^n} \sum_{i=1}^m \max\{0, 1 - x^T P_i x\}.$$
 (2)

When a feasible point of (1) exists: global minimizers of (2) \Leftrightarrow feasible points of (1).

$$Goal \\ \underset{x \in \mathbb{R}^n}{\text{minimize}} \sum_{i=1}^m \max\{0, 1 - x^T P_i x\}$$
(2)

$$Goal \\ \underset{x \in \mathbb{R}^n}{\text{minimize}} \sum_{i=1}^m \max\{0, 1 - x^T P_i x\}$$
(2)

Solving the optimization problem (2):

Standard optimization tools such as stochastic gradient descent have a chance at solving (2).

$$Goal$$

$$\min_{x \in \mathbb{R}^n} \sum_{i=1}^m \max\{0, 1 - x^T P_i x\}$$
(2)

Solving the optimization problem (2):

Standard optimization tools such as stochastic gradient descent have a chance at solving (2).

However, assuming feasibility, success of recovering a feasible point crucially depends on every local minimizer of (2) being a global minimizer. To this end, the goal is to classify the non-global minimizers of (2).

Examples of non-convex problems where all local minima are global minima under suitable assumptions:

Phase retrieval [Sun, Qu, Wright 2016]; Neural networks [Kawaguchi 2016; Haeffele and Vidal 2017; Ge, Lee, Ma 2017]; Matrix completion [Ma 2016]; Burer-Montiero Factorization for Semidefinite Programs [Boumal, Voroninski, and Bandeira 2016]

Work that proposes optimization problems for finding an ordinal embedding:

- Kruskal, 1964;
- Agarwal et al., 2007
- Terada & Von Luxberg, 2014
- Jain, Jamieson, & Nowak, 2016.

Other work that proposes (2) or studies (1):

- Konar and Sidiropoulos. *Fast feasibility pursuit for non-convex QCQPS via first-order methods,* 2017.
- Boyd and Park. *General Heuristics for Nonconvex Quadratically Constrained Quadratic Programming,* 2017.
- Luo et al. Semidefinite Relaxation of Quadratic Optimization Problems, 2010.

Other work that proposes (2) or studies (1):

- Konar and Sidiropoulos. *Fast feasibility pursuit for non-convex QCQPS via first-order methods,* 2017.
- Boyd and Park. *General Heuristics for Nonconvex Quadratically Constrained Quadratic Programming,* 2017.
- Luo et al. Semidefinite Relaxation of Quadratic Optimization Problems, 2010.

However, none of these works theoretically studies the landscape of (2).

Our Results

Two dimensions:

Theorem: Assume $P_1, \ldots, P_m \in \mathbb{R}^{2 \times 2}$ are trace zero and symmetric such that a feasible point exists. Furthermore, assume no three of the curves $x^T P_i x = 1$ intersect at a point. Every local minimizer of (2) is a global minimizer.

$$\underset{x \in \mathbb{R}^n}{\text{minimize}} \sum_{i=1}^m \max\{0, 1 - x^T P_i x\} \quad (2)$$

Our Results

Proof idea: For any point that is not a global minimizer, we exhibit a descent direction.

Importance of Assumptions

Consider $P_1 = \binom{1 \ 0}{0 \ -.5}, P_2 = \binom{.5 \ 1}{1 \ 1}, P_3 = \binom{0 \ 1}{1 \ 5}.$

- Indefinite, but not trace zero.
- $[1,1]^T$ is a feasible point.
- [1.1, -.7] is approximately a non-global minimizer.

Objective of (2) using P₁, P₂, and P₃:

Our Results

Theorem: Let $\{P_i \in \mathbb{R}^{n \times n}\}$ be a set of real, symmetric trace 0 matrices. Assume the P_i share a feasible point. If $x \in \mathbb{R}^n$ is a non-global minimizer of (2), x must satisfy the following two equations:

P1)
$$\sum_{\{i:x^TP_ix<1\}} x^TP_ix < 0$$

P2) $\sum_{\{i:x^TP_ix<1\}} x^TP_ix + \sum_{\{i:x^TP_ix=1\}} x^TP_ix \ge 0.$
In particular, $\{i:x^TP_ix=1\} \neq \emptyset$.

Take-away: Non-global minimizers arise when at least one constraint is equal to one.

$$\underset{x \in \mathbb{R}^n}{\text{minimize}} \sum_{i=1}^m \max\{0, 1 - x^T P_i x\}$$
(2)

Experiments

We used mini-batch stochastic gradient descent to solve the optimization problem in all experiments:

We call an experiment successful if stochastic gradient descent converged to a feasible point.

Experiments

<u>Step size</u>: $\eta_i = (\text{initial step}) * .5^{(i/\text{num of quadratic constraints})},$ where we vary the initial step.

Initialization:

We pick a random point for initialization but we vary the norm, which we call "initial scale."

Experiments: Random Constraints

- 2000 trace zero symmetric $\mathbb{R}^{20 \times 20}$ matrices with entries were drawn from $\mathcal{N}(0, 1)$ with a feasible point.
- Stochastic gradient descent capped at 4000 epochs with mini-batch sizes of 300.
- 50 experiments were ran per initial step and initial scale.

Experiments: Ordinal Embedding

- All $O(50^3)$ triplet constraints were collected from 50 points in \mathbb{R}^2 whose coordinates were drawn from $\mathcal{N}(0, 1)$.
- Stochastic gradient descent capped at 8000 epochs with mini-batch sizes of 1000.
- 20 experiments were ran per initial step and initial scale.

Experiments: Ordinal Embedding

one ordinal embedding experiment where initial step = .5 and initial scale = 10000

Open Questions

1. Classify landscape in higher dimensions.

Open Questions

- 1. Classify landscape in higher dimensions.
- 2. Guided by the landscape, prove convergence rates for stochastic gradient descent.

Open Questions

1. Classify landscape in higher dimensions.

- 2. Guided by the landscape, prove convergence rates for stochastic gradient descent.
- 3. Understand why large norm initialization works.