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Quadratic Feasibility
Let P1, . . . , Pm 2 Rn⇥n. The homogenous
quadratic feasibility problem is defined as

find x 2 Rn (1)

subject to xTPix > 0, 8 i = 1, . . . ,m .

(1)
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Quadratic Feasibility: Motivation
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Ordinal Embedding (aka non-metric multidimensional scaling):
Let D(·, ·) be a distance function.
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from ordinal information to metric representation

Rd
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Ordinal Embedding (aka non-metric multidimensional scaling):

Let D(·, ·) be a distance function.



Quadratic Feasibility: Motivation

!9

Ordinal embedding: Find {xi 2 Rd} such that

kxi � xkk22 < kxi � xjk22
=) hxi � xk, xi � xki < hxi � xj , xi � xji

=) 0 < xTPijkx,

where x =

0

BBB@

x1

x2
.
.
.

xn

1

CCCA
2 Rnd

and Pijk 2 Rnd⇥nd
.
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Example 

in     :R2

0 < kw � zk22 � kw � yk22
) 0 < hy, yi+ 2hw, z � yi � hz, zi
) 0 < xTPwyzx

x =

0

BBBBBB@

w1

w2

y1
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z1
z2

1

CCCCCCA
Pwyz =

0

BBBBBB@

0 0 �1 0 1 0
0 0 0 �1 0 1
�1 0 1 0 0 0
0 �1 0 1 0 0
1 0 0 0 �1 0
0 1 0 0 0 �1

1

CCCCCCA

“w is closer to y than z”:
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Quadratic Feasibility: Motivation

trace(Pwyz) indefinite 

(has positive & negative eigenvalues)

!12

Example 

in     :R2

0 < kw � zk22 � kw � yk22
) 0 < hy, yi+ 2hw, z � yi � hz, zi
) 0 < xTPwyzx

x =

0

BBBBBB@

w1

w2

y1
y2
z1
z2

1

CCCCCCA
Pwyz =

0

BBBBBB@

0 0 �1 0 1 0
0 0 0 �1 0 1
�1 0 1 0 0 0
0 �1 0 1 0 0
1 0 0 0 �1 0
0 1 0 0 0 �1

1

CCCCCCA

“w is closer to y than z”:



The Optimization Problem
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(1)find x 2 Rn (1)

subject to xTPix > 0, i = 1, . . . ,m .
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We formulate (1) as a non-convex, unconstrained
optimization problem with the hinge loss:

minimize
x2Rn

mX

i=1

max{0, 1� xTPix}. (2)(2)

(1)find x 2 Rn (1)

subject to xTPix > 0, i = 1, . . . ,m .



The Optimization Problem
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When a feasible point of (1) exists:
global minimizers of (2) , feasible points of (1).

We formulate (1) as a non-convex, unconstrained
optimization problem with the hinge loss:

minimize
x2Rn

mX

i=1

max{0, 1� xTPix}. (2)(2)

(1)find x 2 Rn (1)

subject to xTPix > 0, i = 1, . . . ,m .
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The Optimization Problem
A feasible point where the 

objective of (2) is minimized (=0).
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(2)minimize
x2Rn

mX

i=1

max{0, 1� xTPix}



Goal

Solving the optimization problem (2):  
Standard optimization tools such as stochastic gradient 
descent have a chance at solving (2).
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Goal

However, assuming feasibility, success of recovering a 
feasible point crucially depends on every local minimizer 
of (2) being a global minimizer. To this end, the goal is 
to classify the non-global minimizers of (2). 

Solving the optimization problem (2):  
Standard optimization tools such as stochastic gradient 
descent have a chance at solving (2).
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(2)minimize
x2Rn

mX

i=1

max{0, 1� xTPix}



Related Work

Examples of non-convex problems where all local 
minima are global minima under suitable 
assumptions:


Phase retrieval [Sun, Qu, Wright 2016]; Neural 
networks [Kawaguchi 2016; Haeffele and Vidal 
2017; Ge, Lee, Ma 2017]; Matrix completion 
[Ma 2016]; Burer-Montiero Factorization for 
Semidefinite Programs [Boumal, Voroninski, 
and Bandeira 2016]
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Related Work

!21

Work that proposes optimization problems for 
finding an ordinal embedding: 


• Kruskal, 1964; 

• Agarwal et al., 2007

• Terada & Von Luxberg, 2014 

• Jain, Jamieson, & Nowak, 2016.




Related Work

Other work that proposes (2) or studies (1):
• Konar and Sidiropoulos. Fast feasibility pursuit for 

non-convex QCQPS via first-order methods, 2017.
• Boyd and Park. General Heuristics for Nonconvex 

Quadratically Constrained Quadratic Programming, 
2017.

• Luo et al. Semidefinite Relaxation of Quadratic 
Optimization Problems, 2010.
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Related Work

Other work that proposes (2) or studies (1):
• Konar and Sidiropoulos. Fast feasibility pursuit for 

non-convex QCQPS via first-order methods, 2017.
• Boyd and Park. General Heuristics for Nonconvex 

Quadratically Constrained Quadratic Programming, 
2017.

• Luo et al. Semidefinite Relaxation of Quadratic 
Optimization Problems, 2010.

However, none of these works theoretically studies the 
landscape of (2).
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 Our Results
Two dimensions:
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Theorem: Assume P1, . . . , Pm 2 R2⇥2 are trace zero and symmetric
such that a feasible point exists. Furthermore, assume no three of the
curves xTPix = 1 intersect at a point. Every local minimizer of (2) is a
global minimizer.

(2)minimize
x2Rn

mX

i=1

max{0, 1� xTPix}
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 Our Results
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Proof idea: For any point that is not a global minimizer, we 
exhibit a descent direction. 
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Importance of Assumptions

Non-global, local minimizer

Zoomed in:
Objective of (2) 
using P1, P2, and P3:
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Consider P1 = (1 0
0 �.5), P2 = (.5 1

1 1), P3 = (0 1
1 5).

• Indefinite, but not trace zero.
• [1, 1]T is a feasible point.
• [1.1,�.7] is approximately a non-global minimizer.



Our Results

Take-away: Non-global minimizers arise when at least 
one constraint is equal to one. 
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Theorem: Let {Pi 2 Rn⇥n} be a set of real, symmetric
trace 0 matrices. Assume the Pi share a feasible point.
If x 2 Rn is a non-global minimizer of (2), x must satisfy
the following two equations:
P1)

P
{i:xTPix<1} x

TPix < 0

P2)
P

{i:xTPix<1} x
TPix+

P
{i:xTPix=1} x

TPix � 0.

In particular, {i : xTPix = 1} 6= ?.

(2)minimize
x2Rn

mX

i=1

max{0, 1� xTPix}



Experiments
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We used mini-batch stochastic gradient descent to 
solve the optimization problem in all experiments:

step size

sub-gradientcurrent estimate

x(i) = x(i�1) � ⌘i
X

�2Pjx
(i�1).

{j 2 Ti : x
(i�1)TPjx

(i�1) < 1}

mini-batch

We call an experiment successful if stochastic 
gradient descent converged to a feasible point. 



Experiments
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Step size:
                                                                             ,
where we vary the initial step.                  

⌘i = (initial step) ⇤ .5(i/num of quadratic constraints)

Initialization: 
We pick a random point for initialization but we vary the 
norm, which we call “initial scale.”



Experiments: Random Constraints
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Proportion of Success 

Experiment Details:

• 2000 trace zero symmetric R20⇥20 matrices with entries were drawn
from N (0, 1) with a feasible point.

• Stochastic gradient descent capped at 4000 epochs with mini-batch
sizes of 300.

• 50 experiments were ran per initial step and initial scale.



Experiments: Ordinal Embedding
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Proportion of Success 

Experiment Details:

• All O(503) triplet constraints were collected from 50 points in R2

whose coordinates were drawn from N (0, 1).

• Stochastic gradient descent capped at 8000 epochs with mini-batch
sizes of 1000.

• 20 experiments were ran per initial step and initial scale.
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Experiments: Ordinal Embedding

one ordinal embedding experiment where initial 
step = .5 and initial scale = 10000

~99% 100%



Open Questions

1. Classify landscape in higher dimensions.
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Open Questions

1. Classify landscape in higher dimensions.

2. Guided by the landscape, prove convergence 
rates for stochastic gradient descent.

3. Understand why large norm initialization works.
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