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Social Networks and Location of Users

2.2B active users

330M active users

255M active users

§ Location of users enable many 
applications

§ User location profile information 
might be missed or ambiguous: 
e.g. “Small town”, “Everywhere”

§ ~3% of tweets are geo-tagged [3]

Reference: https://www.statista.com/statistics/272014/global-social-networks-ranked-by-number-of-users/
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The Tasks of Twitter User Geolocation
§ Region classification: 

Northeast, Midwest, West, 
and South

§ State classification: 50 
states

§ Geo-coordinates 
prediction: (latitude, 
longitude)

[38.89, -77,01]

Region and state boundaries are from the US census shape files
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Our Approaches

User 1 User 2

User 3

“Congratulations to San 
Francisco’s Andrew Sean Greer 
and Compton’s Kendrick Lamar 

on earning Pulitzer Prizes for 
fiction and music”

Content-based

Network-based

Metadata

Our approach

§ Content-based: Tweets are used 
for location prediction

§ Network-based: Online 
relationships (e.g. following, 
mentioning) are used for 
location prediction 
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Learning from Multiple Views

§ Processing: Tweets from the same user are 
concatenated making up a tweet document

§ Feature extraction:
§ Individual word level: Term frequency-inverse 

document frequency (TF-IDF)
§ Semantic level: Doc2vec
§ User connection structure: Node2vec
§ Metadata: Posting timestamps of tweets

Content features

Network feature
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User Representation as Node Embedding

Congrats to @USER_2 and Sister Jean 
for a last-second upset - I had faith in 

my pick!

USER_1

USER_2

User_X

@User_X How are you?USER_3

Coming to #tryswiftnyc all the 
way from US... please give a 

hand to @User_X

@User_1, @User_3 J lol. 
Saying ok to both

USER_4

§ Sequences of node indices are 
sampled using Random Walk [7]

§ Node sequences are the input 
to a simple neural network 
similar to word2vec [8]

§ Node embeddings are trained 
using SGD
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MENET: Proposed Architecture

Region/State probabilities

Fully connected layer
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From Classification to Regression

Centroid

Known location

State area

1. Predict the state label
2. Predict geographical coordinates using 

the centroid of the state
3. State centroid = median {[latitude, 

longitude]}
4. The centroid coordinates are calculated 

from the  geographical coordinates 
available in the training set
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Performance criteria
§ Region and state classification: Accuracy (%)
§ Geographical coordinates prediction: 

§ Mean distance error (km)
§ Median distance error (km)
§ Accuracy within 161 km (~100 miles) or @161 (%)

§ The distance between two locations is computed using the 
Haversine formula

φ: Latitude
λ: Longitude
R: The Earth’s radius
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Experimental Results

Table 1. Region and state classification result on GeoText[1] and UTGeo2011[4]

§ 9% improvement for region classification
§ 23.8% improvement for state classification

[1]

[2]

[3]
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Experimental Results

Table 2. Geo-coordinates prediction on GeoText[1] and UTGeo2011[4]

[1]

[4]
[2]

[3]
[5]
[6]



12/20

Conclusion

§ Twitter user geo-location is challenging due to noisy data.
§ Combine the content and network features can improve the geo-

location accuracy.
§ Multi-view learning can exploit different views of Twitter data for 

location prediction.
§ The proposed architecture can be extended with different types of 

features or by adding more hidden layers.
§ The distribution of Twitter users will be considered in the future 

work.
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