THE CHORD GAP DIVERGENCE AND A GENERALIZATION OF THE BHATTACHARYYA DISTANCE - THE CHORD JENSEN DIVERGENCE -

Frank Nielsen

Sony Computer Science Laboratories Inc, Japan
École Polytechnique, France

18th April 2018
— ICASSP —

Outline of the talk

- Background on divergences: Statistical divergences versus parameter divergences
- Definition of the chord gap divergence and review of its properties
- Chord gap divergence yields a generalization of the renown Burbea-Rao divergence/Jensen divergences [4]. Used as a distance in matrix signal processing [7, 10, 5, 12] (as known as Jensen-Bregman LogDet, JBLD)
- Center-based k-means $(++)$ clustering with respect to the chord gap divergence
- Concluding remarks and perspectives

Background on statistical and parameter divergences

- In statistics, divergence $=$ distortion measure between probability measures. E.g., Kullback-Leibler (KL) divergence/deviance ($=$ relative entropy in IT):

$$
\mathrm{KL}[p: q]:=\int_{\mathcal{X}} p(x) \log \frac{p(x)}{q(x)} \mathrm{d} \mu(x)
$$

- In information geometry [1] , divergence $=$ smooth dissimilarity measure between parameters: $D\left(\theta: \theta^{\prime}\right) \geq 0$ with equality iff $\theta=\theta^{\prime}$. Non-metric measure when it violates the triangle inequality. E.g., Bregman divergence for a strictly convex and smooth generator F :

$$
B_{F}\left(\theta: \theta^{\prime}\right):=F(\theta)-F\left(\theta^{\prime}\right)-\left(\theta-\theta^{\prime}\right)^{\top} \nabla F\left(\theta^{\prime}\right)
$$

- Potential confusion: BD for $F(\theta)=\sum_{i} \theta_{i} \log \theta_{i}$ yields discrete $\mathrm{KL}[p: q]=\sum_{i} p_{i} \log \frac{p_{i}}{q_{i}}+q_{i}-p_{i}=B_{F}(p: q)$ extended to discrete positive measures. On the probability simplex, $\mathrm{KL}[p: q]=\operatorname{KL}(p: q)$.

Principled parametric statistical divergences

- Statistical divergences on parametric models $\mathcal{F}=\left\{p_{\theta}\right\}$ amount to an equivalent parameter divergence:

$$
D_{\mathcal{F}}\left(\theta: \theta^{\prime}\right):=D\left[p_{\theta}: p_{\theta^{\prime}}\right]
$$

- Principled statistical divergences: Invariant f-divergences (including KL for $f(u)=-\log u$) in information geometry

$$
I_{f}[p: q]:=\int_{\mathcal{X}} p(x) f\left(\frac{q(x)}{p(x)}\right) \mathrm{d} \mu(x)
$$

Invariance by Markov kernel on sample space and information monotonicity when $Y=T(X)$ [1]:

$$
I_{f}\left[p_{Y}: q_{Y}\right] \leq I_{f}\left[p_{X}: q_{X}\right]
$$

- Parametric families of divergences useful in practice for fine tuning performance in applications (increase DOFs).

Parameter divergence families from convex generators

- Skew Jensen divergences [4, 13, 6] (Burbea-Rao divergences [4]) for a strictly convex function F :

$$
J_{F}^{\alpha}\left(\theta: \theta^{\prime}\right):=\left(F(\theta) F\left(\theta^{\prime}\right)\right)_{\alpha}-F\left(\left(\theta \theta^{\prime}\right)_{\alpha}\right)
$$

where $\left(\theta \theta^{\prime}\right)_{\lambda}:=(1-\lambda) \theta+\lambda \theta^{\prime}=\theta+\lambda\left(\theta^{\prime}-\theta\right)$.

- Related asymptotically to Bregman divergences [3, 2]:

$$
\begin{aligned}
\lim _{\alpha \rightarrow 0+} \frac{1}{\alpha(1-\alpha)} J_{F}^{\alpha}\left(\theta: \theta^{\prime}\right) & =B_{F}\left(\theta^{\prime}: \theta\right) \\
\lim _{\alpha \rightarrow 1-} \frac{1}{\alpha(1-\alpha)} J_{F}^{\alpha}\left(\theta: \theta^{\prime}\right) & =B_{F}\left(\theta: \theta^{\prime}\right)
\end{aligned}
$$

Geometric interpretation: Skew Jensen inequality gap

$$
J_{F}^{\alpha}\left(\theta: \theta^{\prime}\right):=\left(F(\theta) F\left(\theta^{\prime}\right)\right)_{\alpha}-F\left(\left(\theta \theta^{\prime}\right)_{\alpha}\right)
$$

Can be generalized to (M, N)-convexity [11]: $\left(\theta \theta^{\prime}\right)_{\alpha}=M_{1-\alpha}\left(\theta: \theta^{\prime}\right)$ and $\left(F(\theta) F\left(\theta^{\prime}\right)\right)_{\alpha}=N_{1-\alpha}\left(F(\theta): F\left(\theta^{\prime}\right)\right)$. Usual skew Jensen divergence is for $M=N=A$, the weighted Arithmetic mean.

Statistical distances on parametric families

- $\mathcal{F}=\{p(x ; \theta)\}$ exponential family [9] with density $p_{\theta}(x):=\exp \left(\theta^{\top} x-F(\theta)\right)$
(include Gaussian, Gamma/Beta, Poisson, etc.)
- Statistical skew Bhattacharrya divergences [7]:

$$
\begin{aligned}
\operatorname{Bhat}_{\alpha}[p: q] & :=-\log \int p^{1-\alpha}(x) q^{\alpha}(x) \mathrm{d} \mu(x) \\
\operatorname{Bhat}_{\alpha}\left[p_{\theta_{1}}: p_{\theta_{2}}\right] & =J_{F}^{\alpha}\left(\theta_{1}: \theta_{2}\right)=J_{F}^{1-\alpha}\left(\theta_{2}: \theta_{1}\right) .
\end{aligned}
$$

- Asymptotic cases (general/exponential families):

$$
\begin{aligned}
\lim _{\alpha \rightarrow 0^{+}} \frac{1}{\alpha(1-\alpha)} \operatorname{Bhat}_{\alpha}[p: q] & =\operatorname{KL}[p: q] \\
\lim _{\alpha \rightarrow 1^{-}} \frac{1}{\alpha(1-\alpha)} \operatorname{Bhat}_{\alpha}[p: q] & =\operatorname{KL}[q: p] \\
\lim _{\alpha \rightarrow 0^{+}} \frac{1}{\alpha(1-\alpha)} \operatorname{Bhat}_{\alpha}\left(p_{\theta}: p_{\theta^{\prime}}\right) & =B_{F}\left(\theta^{\prime}: \theta\right) \\
\lim _{\alpha \rightarrow 1^{-}} \frac{1}{\alpha(1-\alpha)} \operatorname{Bhat}_{\alpha}\left(p_{\theta}: p_{\theta^{\prime}}\right) & =B_{F}\left(\theta: \theta^{\prime}\right)
\end{aligned}
$$

Relationships between statistical/parameter divergences

Relationships between statistical distances and parameter divergences when the distributions belong to the same exponential family.

Statistical divergences
Parameter divergences

Skew Jensen-Bregman divergence

Skew Jensen divergence rewritten as a skew Jensen-Bregman divergence

Skew Jensen-Bregman (JB) divergence [6] (inspired by statistical Jensen-Shannon divergence):

$$
\mathrm{JB}_{F}^{\alpha}\left(\theta: \theta^{\prime}\right):=(1-\alpha) B_{F}\left(\theta:\left(\theta \theta^{\prime}\right)_{\alpha}\right)+\alpha B_{F}\left(\theta^{\prime}:\left(\theta \theta^{\prime}\right)_{\alpha}\right)
$$

$$
\mathrm{JB}_{F}^{\alpha}\left(\theta: \theta^{\prime}\right)=J_{F}^{\alpha}\left(\theta: \theta^{\prime}\right)
$$

\Rightarrow since $\theta-\left(\theta \theta^{\prime}\right)_{\alpha}=\alpha\left(\theta-\theta^{\prime}\right)$ and $\theta^{\prime}-\left(\theta \theta^{\prime}\right)_{\alpha}=(1-\alpha)\left(\theta^{\prime}-\theta\right)$, the gradient terms $\nabla F\left(\left(\theta \theta^{\prime}\right)_{\alpha}\right)$ in the Bregman divergences
canceled out!

The novel triparametric chord gap divergence

Vertical distances between an outer upper chord U and inner lower chord L is always non-negative:

The chord gap divergence induced by a strictly convex function F is defined for $\alpha, \beta \in[0,1]$ and $\gamma \in(\alpha, \beta)$ as

$$
J_{F}^{\alpha, \beta, \gamma}\left(\theta: \theta^{\prime}\right)=\left(F(\theta) F\left(\theta^{\prime}\right)\right)_{\gamma}-\left(F\left(\left(\theta \theta^{\prime}\right)_{\alpha}\right) F\left(\left(\theta \theta^{\prime}\right)_{\beta}\right)\right)_{\frac{\gamma-\alpha}{\beta-\alpha}}
$$

Chord gap divergence: Quadratic generator $F(\theta)=\frac{1}{2} \sum_{i} \theta_{i}^{2}(\mathrm{BD}=$ half squared Euclidean distance $)$

Chord gap divergence: Shannon information
$F(\theta)=\sum_{i} \theta_{i} \log \theta_{i}(\mathrm{BD}=$ extended $\mathrm{KL}, \mathrm{F}=$ negentropy $)$

Chord gap divergence: Burg information generator $F(\theta)=-\sum_{i} \log \theta_{i}(\mathrm{BD}=$ Itakura-Saito divergence $)$

Some basic properties of the chord gap parameter divergence

- Generalization of skew Jensen divergence:

$$
J_{F}^{\alpha, \alpha, \alpha}\left(\theta: \theta^{\prime}\right)=J_{F}^{\alpha}\left(\theta: \theta^{\prime}\right)
$$

(visually speaking, lower chord collapses to a point) For $\alpha=0$, $\beta=1$, we have $\lambda=\gamma$, and we also recover the skew γ-Jensen divergence.

- Reference duality $\left(\theta \leftrightarrow \theta^{\prime}\right)$:

$$
J_{F}^{\alpha, \beta, \gamma}\left(\theta^{\prime}: \theta\right)=J_{F}^{1-\alpha, 1-\beta, 1-\gamma}\left(\theta: \theta^{\prime}\right)
$$

In particular $J_{F}^{1-\alpha, 1-\alpha, 1-\alpha}\left(\theta: \theta^{\prime}\right)=J_{F}^{\alpha}\left(\theta^{\prime}: \theta\right)$

- Interpreted as the difference of two skew Jensen divergences:

$$
\begin{gathered}
\qquad J_{F}^{\alpha, \beta, \gamma}\left(\theta: \theta^{\prime}\right)=J_{F}^{\gamma}\left(\theta: \theta^{\prime}\right)-J_{F}^{\lambda}\left(\left(\theta \theta^{\prime}\right)_{\alpha}:\left(\theta \theta^{\prime}\right)_{\beta}\right) \\
\text { with } \left.\lambda=\frac{\gamma-\alpha}{\beta-\alpha} \text { (i.e., } \gamma=\lambda(\beta-\alpha)+\alpha\right) . \\
\Rightarrow \text { Chord Jensen Divergence }
\end{gathered}
$$

A biparametric subfamily of chord gap divergences

Consider $\alpha=0$ so that $\left(\theta \theta^{\prime}\right)_{\alpha}=\theta$.
Then upper \& lower chords coincide at extremity $(\theta, F(\theta))$.

$$
\begin{aligned}
J_{F}^{\beta, \gamma}\left(\theta: \theta^{\prime}\right) & =\left(F(\theta) F\left(\theta^{\prime}\right)\right)_{\gamma}-\left(F(\theta) F\left(\theta \theta^{\prime}{ }_{\beta}\right)\right)_{\frac{\gamma}{\beta}}, \\
& =\left(\frac{\gamma}{\beta}-\gamma\right) F(\theta)+\gamma F\left(\theta^{\prime}\right)-\frac{\gamma}{\beta} F\left(\left(\theta \theta^{\prime}\right)_{\beta}\right), \\
& =\gamma\left(\left(\frac{1}{\beta}-1\right) F(\theta)+F\left(\theta^{\prime}\right)-\frac{1}{\beta} F\left(\left(\theta \theta^{\prime}\right)_{\beta}\right)\right)
\end{aligned}
$$

In particular, when $\beta=\frac{1}{2}$:

$$
J_{F}^{\gamma}\left(\theta: \theta^{\prime}\right)=2 \gamma\left(\frac{F(\theta)+F\left(\theta^{\prime}\right)}{2}-F\left(\frac{\theta+\theta^{\prime}}{2}\right)\right)
$$

$=$ ordinary (scaled) Jensen divergence.
When $\beta \rightarrow 0, \lim _{\beta \rightarrow 0} \frac{1}{\gamma} J_{F}^{\beta, \gamma}\left(\theta: \theta^{\prime}\right)=B_{F}\left(\theta^{\prime}: \theta\right)$ (with $\gamma \in(0, \beta)$)

Generalization of the statistical Bhattacharyya divergence

- First, let us use the equivalence of chord gap divergence (difference of two skew Jensen divergences) with the statistical Bhattacharrya divergences between distributions of a same exponential family:

$$
\text { Bhat }^{\alpha, \beta, \gamma}\left[p_{\theta}: p_{\theta^{\prime}}\right]=-\log \frac{\int p^{1-\gamma}(x ; \theta) p^{\gamma}\left(x ; \theta^{\prime}\right) \mathrm{d} \mu(x)}{\int p^{1-\lambda}\left(x ;\left(\theta \theta^{\prime}\right)_{\alpha}\right) p^{\lambda}\left(x ;\left(\theta \theta^{\prime}\right)_{\beta}\right) \mathrm{d} \mu(x)}
$$

- Then relax/extrapolate the definition to arbitrary densities: (need to normalize distributions on Bhattacharyya arcs)

Bhat $^{\alpha, \beta, \gamma}[p: q]:=$
$-\log \left(\frac{\int p(x)^{1-\gamma} q(x)^{\gamma} \mathrm{d} \mu(x)}{\int\left(\frac{p(x)^{1-\alpha} q(x)^{\alpha}}{\int p(x)^{1-\alpha} q(x)^{\alpha} \mathrm{d} \mu(x)}\right)^{1-\lambda}\left(\frac{p(x)^{1-\beta} q(x)^{\beta}}{\int p(x)^{1-\beta} q(x)^{\beta} \mathrm{d} \mu(x)}\right)^{\lambda} \mathrm{d} \mu(x)}\right)$

Clustering: Centroid wrt. to the chord gap divergence

- The centroid of n parameter $\left\{\theta_{1}, \ldots, \theta_{n}\right\}$ is defined as the minimizer of

$$
\min _{\theta} \sum_{i=1}^{n} J_{F}^{\alpha, \beta, \gamma}\left(\theta_{i}: \theta\right)
$$

- Express the function using a difference of convex functions
- Iteratively optimize using the Concave-Convex Procedure (CCCP): $\theta^{(t+1)}=$
$\nabla F^{-1}\left(\frac{1}{\gamma} \sum_{i} w_{i}\left((1-\lambda) \alpha \nabla F\left(\left(\theta_{i} \theta^{(t)}\right)_{\alpha}\right)+\lambda \beta \nabla F\left(\left(\theta_{i} \theta^{(t)}\right)_{\beta}\right)\right)\right)$
- Guaranteed to converge [6] to a (local) minimum.

But no need to compute centroids with k-means++ initialization!

Guaranteed probabilistic initialization of k-means++

By pass the centroid computations in k-means that minimizes loss function

$$
\sum_{i=1}^{n} \min _{j \in[k]} D\left(\theta_{i}: C_{j}\right)
$$

For a general divergence D, to get an expected competitive ratio of $2 U^{2}(1+V)(2+\log k)$, we need to bound [8]:

- U such that the divergence $D=J_{F}^{\alpha, \beta \gamma}$ satisfies the U-triangular inequality:

$$
D(x: z) \leq U(D(x: y)+D(y: z))
$$

For any squared Mahalanobis distance
$D_{Q}\left(\theta, \theta^{\prime}\right):=\left(\theta^{\prime}-\theta\right)^{\top} Q\left(\theta^{\prime}-\theta\right)$ (with $Q \succ 0$), we have $U=2$.

- V such that the divergence satisfies the symmetric inequality:

$$
D(y: x) \leq V D(x: y)
$$

Bounding U and V for the chord gap divergence

Using Jensen-Bregman divergence and the Lagrange remainder of first-order Taylor expansion of Bregman divergences

$$
J_{F}^{\alpha}\left(\theta: \theta^{\prime}\right)=(1-\alpha) B_{F}\left(\theta:\left(\theta \theta^{\prime}\right)_{\alpha}\right)+\alpha B_{F}\left(\theta^{\prime}:\left(\theta \theta^{\prime}\right)_{\alpha}\right)
$$

We get

$$
J_{F}^{\alpha}\left(\theta: \theta^{\prime}\right)=\left(\theta^{\prime}-\theta\right)^{\top} H_{\alpha}\left(\theta: \theta^{\prime}\right)\left(\theta^{\prime}-\theta\right)
$$

with

$$
H_{\alpha}\left(\theta: \theta^{\prime}\right)=\frac{\alpha(1-\alpha)}{2}\left(\alpha \nabla^{2} F\left(\xi_{1}\right)+(1-\alpha) \nabla^{2} F\left(\xi_{2}\right)\right) \succ 0,
$$

$\xi_{1} \in\left[\theta\left(\theta \theta^{\prime}\right)_{\alpha}\right]$ and $\xi_{2} \in\left[\left(\theta \theta^{\prime}\right)_{\alpha} \theta^{\prime}\right]$

Chord Jensen Divergence as a squared Mahalanobis distance

 Since we have $\left(\theta \theta^{\prime}\right)_{\alpha}-\left(\theta \theta^{\prime}\right)_{\beta}=(\alpha-\beta)\left(\theta^{\prime}-\theta\right)$, it follows that $J_{F}^{\lambda}\left(\left(\theta \theta^{\prime}\right)_{\alpha}:\left(\theta \theta^{\prime}\right)_{\beta}\right)=(\alpha-\beta)^{2}\left(\theta^{\prime}-\theta\right)^{\top} H_{\lambda}\left(\theta^{\prime}, \theta\right)$Finally, from the difference of two skew Jensen divergences, it follows that the squared Mahalanobis expression $(U=2)$

$$
J_{F}^{\alpha, \beta, \gamma}\left(\theta: \theta^{\prime}\right)=\frac{1}{2}\left(\theta^{\prime}-\theta\right)^{\top} H_{F}^{\alpha, \beta, \gamma}\left(\theta: \theta^{\prime}\right)\left(\theta^{\prime}-\theta\right)
$$

$$
\begin{aligned}
H_{F}^{\alpha, \beta, \gamma}\left(\theta: \theta^{\prime}\right) & =\frac{1}{2} \gamma(1-\gamma) \nabla^{2} F\left(\xi^{\prime}\right)-\frac{1}{2} \lambda(1-\lambda)(\alpha-\beta)^{2} \nabla^{2} F\left(\xi^{\prime \prime}\right) \\
& =\frac{1}{2}\left(\gamma(1-\gamma) \nabla^{2} F\left(\xi^{\prime}\right)-(\gamma-\alpha)(\gamma-\beta) \nabla^{2} F\left(\xi^{\prime \prime}\right)\right)
\end{aligned}
$$

Therefore, we bound $V \leq \rho$ for $\mathcal{P}=\left\{\theta_{i}\right\}$ (co: convex hull) with

$$
\rho=\frac{\sup _{\xi^{\prime}, \xi^{\prime \prime}, \theta, \theta^{\prime} \in \operatorname{co}(\mathcal{P})}\left\|\left(\nabla^{2} F\left(\xi^{\prime}\right)\right)^{\frac{1}{2}}\left(\theta^{\prime}-\theta\right)\right\|}{\inf _{\xi^{\prime}, \xi^{\prime \prime}, \theta, \theta^{\prime} \in \cos (\mathcal{P})}\left\|\left(\nabla^{2} F\left(\xi^{\prime \prime}\right)\right)^{\frac{1}{2}}\left(\theta^{\prime}-\theta\right)\right\|}<\infty
$$

and the chord gap divergence k-means++ yields a guaranteed probabilistic initialization

Summary and perspectives

- Statistical divergences $D\left[p_{\theta}: p_{\theta^{\prime}}\right]$ on families of parametric probabilities $\mathcal{F}=\left\{p_{\theta}\right\}$ amount to equivalent parametric divergences $D_{\mathcal{F}}\left(\theta: \theta^{\prime}\right)$
- For exponential families, link between skew Jensen parameter divergences and skew Bhattacharrya statistical divergences (and Bregman divergence with Kullback-Leibler divergence asymptotically)
- Parameter divergences can be geometrically constructed from a convex function by taking vertical gaps in the function graph
- The chord gap divergence is an extension of the skew Jensen/Burbea-Rao divergence by taking the vertical gap between an upper chord and a lower chord. Can be expressed as the difference of two skew Jensen gap divergences
- Perspective: Demonstrate its usefulness in applications like clustering or statistical inference.

More in the paper and in arXiv:1709.10498

References

S.-i. Amari.

Information geometry and its applications.
Springer, 2016.
A. Banerjee, S. Merugu, I. S. Dhillon, and J. Ghosh.

Clustering with Bregman divergences.
Journal of machine learning research, 6(Oct):1705-1749, 2005.
Lev M Bregman.
The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming.
USSR computational mathematics and mathematical physics, 7(3):200-217, 1967.
J. Burbea and C. R. Rao.

On the convexity of some divergence measures based on entropy functions.
IEEE Transactions on Information Theory, 28(3):489-495, 1982.

Anoop Cherian, Suvrit Sra, Arindam Banerjee, and Nikolaos Papanikolopoulos.
Jensen-Bregman logdet divergence with application to efficient similarity search for covariance matrices.
IEEE transactions on pattern analysis and machine intelligence, 35(9):2161-2174, 2013.

F. Nielsen and S. Boltz.

The Burbea-Rao and Bhattacharyya centroids.
IEEE Transactions on Information Theory, 57(8):5455-5466, 2011.
F. Nielsen and R. Nock.

Skew Jensen-Bregman Voronoi diagrams.
Trans. Computational Science, 14:102-128, 2011.

References II

F. Nielsen and R. Nock.

Total Jensen divergences: definition, properties and clustering.
In IEEE ICASSP, pages 2016-2020, 2015.
Frank Nielsen and Vincent Garcia.
Statistical exponential families: A digest with flash cards.
CoRR, abs/0911.4863, 2009.
Frank Nielsen, Meizhu Liu, Xiaojing Ye, and Baba C Vemuri.
Jensen divergence based SPD matrix means and applications.
In Pattern Recognition (ICPR), 2012 21st International Conference on, pages 2841-2844. IEEE, 2012.

Frank Nielsen and Richard Nock.
Generalizing skew Jensen divergences and Bregman divergences with comparative convexity. IEEE signal processing letters, 24(8):1123-1127, 2017.

Hui Song, Wen Yang, Xin Xu, and Mingsheng Liao.
Unsupervised PoISAR imagery classification based on Jensen-Bregman logdet divergence.
In EUSAR 2014; 10th European Conference on Synthetic Aperture Radar; Proceedings of, pages 1-4. VDE, 2014.
J. Zhang.

Divergence function, duality, and convex analysis.
Neural Computation, 16(1):159-195, 2004.

