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Outline of the talk

» Background on divergences:
Statistical divergences versus parameter divergences

» Definition of the chord gap divergence and review of its
properties

» Chord gap divergence yields a generalization of the renown
Burbea-Rao divergence/Jensen divergences [4].
Used as a distance in matrix signal processing [7, 10, 5, 12]
(as known as Jensen-Bregman LogDet, JBLD)

» Center-based k-means(++) clustering with respect to the
chord gap divergence

» Concluding remarks and perspectives



Background on statistical and parameter divergences

> In statistics, divergence = distortion measure between
probability measures. E.g., Kullback-Leibler (KL)
divergence/deviance (= relative entropy in IT):

KLlp: qli= [ plx)log E ;dﬂ( )

» In information geometry [1], divergence = smooth dissimilarity
measure between parameters: D(6 : 6') > 0 with equality iff
6 = 60’. Non-metric measure when it violates the triangle
inequality. E.g., Bregman divergence for a strictly convex and
smooth generator F:

Br(0:60):=F(0) — F(0')— (0 —0")TVF(#)

» Potential confusion: BD for F(6) =, 0; log 0; yields discrete

KL[p:ql=>;pi Iog Bt q; — pi = BE(p : q) extended to
discrete positive measures On the probability simplex,

KL[p: q] =KL(p : q).



Principled parametric statistical divergences

» Statistical divergences on parametric models F = {py}
amount to an equivalent parameter divergence:

Dr(0 : 6"):=Dpy : po]

» Principled statistical divergences: Invariant f-divergences
(including KL for f(u) = — log u) in information geometry

Ielp - qlrz/Xp(X)f <Z€3> dp(x)

Invariance by Markov kernel on sample space and information
monotonicity when Y = T(X) [1]:

Ielpy = qv] < Ir[px : gx]

» Parametric families of divergences useful in practice for fine
tuning performance in applications (increase DOFs).



Parameter divergence families from convex generators

» Skew Jensen divergences [4, 13, 6] (Burbea-Rao
divergences [4]) for a strictly convex function F:

JR(0 : 0'):=(F(O)F(0"))a — F((60')a)

where (00")x:=(1 —\)0+ X0’ =0+ \(0' — 0).

» Related asymptotically to Bregman divergences [3, 2]:
1
lim ——J2(0:0) = Bg(0:0)
a

. 1 [0 .0l _ . n!
lim < JR(0:0)) = Be(0:0)



Geometric interpretation: Skew Jensen inequality gap
JE(0 - 6"):=(F(0)F(0))a — F((60')a)

Can be generalized to (M, N)-convexity [11]: (00")o = Mi_o(6 : 6)
and (F(0)F(0'))a = Ni_o(F(0) : F(0")). Usual skew Jensen
divergence is for M=N=A, the weighted Arithmetic mean.



Statistical distances on parametric families

» F = {p(x;0)} exponential family [9] with density
po(x):=exp(8"x — F(0))
(include Gaussian, Gamma/Beta, Poisson, etc.)

» Statistical skew Bhattacharrya divergences [7]:

Bhato[p: q] = —Iog/pla(x)qo‘(x)d,u(x)
Bhata[pgl : p@Z] = Jg(91 : 92) = J,l_—_a((92 : 91).

» Asymptotic cases (general/exponential families):

1
lim ——Bhat : = KL[p:
as0+ a(l —a) atalp - d] [p: gl

1
lim ———Bhat.[p: = KlL]g:
Jm o a =yt [p:q] [q: p]
. 1 ,
lim 7Bhata(p9 : pgl) = BF(G : 9)

a—0t a1l — )

1
lim ——Bhata(ps: por) = Br(0:6)

1= o1 — )



Relationships between statistical /parameter divergences

Relationships between statistical distances and parameter
divergences when the distributions belong to the same exponential

family.
Statistical divergences Parameter divergences

Bhata[p s ] = —log [ p(¢)! ()" du(z) it 30, 00) = (F(O)F(0)a — F((6,0,)a)
lima—04+ 2Bhat,[p : q] l p(@) = p(x;6p) limao4 5J%(0:6')
q(x) = p(x; 6,)
KL[p: q] = [ p(z)log %dﬂ.(.’b‘) <_;. Br(0,:0,) = F(0,) — F(0,) — (0, — 0,) T VE(0,)

Exponential families
p(x;0) = exp(§ Tz — F(6))

Generic distributions



Skew Jensen-Bregman divergence

Skew Jensen divergence rewritten as a skew Jensen-Bregman
divergence

Skew Jensen-Bregman (JB) divergence [6] (inspired by statistical
Jensen-Shannon divergence):

TBX(0 1 0'):=(1 — a)Br(0 : (00)a) + aBe(6' : (60')a)

JBR(O:0')=JE(0:0)

= since 0 — (00")o, = (0 — 0') and 6/ — (00'),, = (1 — )(0' — ),
the gradient terms VF((00'),) in the Bregman divergences
canceled out!



The novel triparametric chord gap divergence

Vertical distances between an outer upper chord U and inner lower

chord L is always non-negative:

Upper chord U

vertical
chord gap

J;;.S."((a . é/
‘ JeP0 1 0)

J30:0)

o T er chord I
Jp((00 )(1?(99 DE 5 : ower chord L :

O ey 0 ’

((66")a(06")5)x

The chord gap divergence induced by a strictly convex function F is

defined for o, 5 € [0,1] and « € (a, ) as

S0 - 0') = (F(O)F(6)), — (F((96')a) F((69)5))
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Chord gap divergence: Quadratic generator
F(0) = 1,67 (BD = half squared Euclidean distance)
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Chord gap divergence: Shannon information

F(8) =>".0ilog8; (BD = extended KL, F = negentropy)
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Chord gap divergence: Burg information generator
F(8) = —>",logf; (BD = ltakura-Saito divergence)
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Some basic properties of the chord gap parameter divergence
» Generalization of skew Jensen divergence:
JEYNO:0") =JR(0:0")

(visually speaking, lower chord collapses to a point) For o = 0,
B =1, we have A = =, and we also recover the skew ~-Jensen
divergence.

» Reference duality (6 <> 0'):
JEPNO 0) = g0 10

In particular JE- 1170 . 0') = J2(#' - 6)
> Interpreted as the difference of two skew Jensen divergences:

Jﬁ’ﬂ"y(e 10') = JH(0: 0") — JR((00)a - (09)5)

with A = 2=2 (ie, y = A\ — a) + a).
:> Chord Jensen Divergence

“\
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A biparametric subfamily of chord gap divergences

Consider v = 0 so that (060'), = 0.
Then upper & lower chords coincide at extremity (6, F(0)).

0 0) = (FO)F(O)), — (FO)F(60'5))

2
B’

_ (g _ 7) FO) +9F(8) ~ SF((68)5)
1

= 2 ((5-1) For Fer - Sren)

In particular, when 3 = 3:

= ordinary (scaled) Jensen divergence.

When 8 — 0, limg_o LJZ7(0 : 0') = Br(¢ - 0) (with v € (0, 3))
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Generalization of the statistical Bhattacharyya divergence

» First, let us use the equivalence of chord gap divergence
(difference of two skew Jensen divergences) with the statistical
Bhattacharrya divergences between distributions of a same
exponential family:

[ £ 0)p s #)(2)

at¥B oy - por] =
Bhat™ e - po] = 108 S (e (00)0)pA O (007)) i)

» Then relax/extrapolate the definition to arbitrary densities:
(need to normalize distributions on Bhattacharyya arcs)

Bhat®?[p : q]:=
J p()' 7 q(x)7dp(x)
()1~ q(x)° 1 A (! q(x)”
I (rrsessiam) (ot X)Bdu(X)) du(x)

—log
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Clustering: Centroid wrt. to the chord gap divergence

» The centroid of n parameter {01,...,0,} is defined as the

minimizer of
n

; B7(g. -
min ZJF (0;: 0)

i=1
» Express the function using a difference of convex functions

> lteratively optimize using the Concave-Convex Procedure
(CCCP): g(t+1) =

VEL (13 mi((1 — NaVA((8:69).) + NSVF((#:60)5)) )

» Guaranteed to converge [6] to a (local) minimum.

But no need to compute centroids with k-means++ initialization!
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Guaranteed probabilistic initialization of k-means++

By pass the centroid computations in k-means that minimizes loss

function
n

min D(6; : C;
> min 01 )

For a general divergence D, to get an expected competitive ratio of
2U2(1 + V)(2 + log k), we need to bound [8]:

» U such that the divergence D = J?’ﬁ7 satisfies the
U-triangular inequality:

D(x:z) < U(D(x:y)+ D(y: z))

For any squared Mahalanobis distance
Do(6,60"):=(6' —6)T Q0 — ) (with Q > 0), we have[ U = 2]

» V such that the divergence satisfies the symmetric inequality:

D(y :x) < VD(x:y)
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Bounding U and V for the chord gap divergence

Using Jensen-Bregman divergence and the Lagrange remainder of
first-order Taylor expansion of Bregman divergences

JEO:0) = (1 —)Be(0: (00")) + aBe(6' : (00")s)

We get

J2O:0)=(0'—0) " Ha(0:0") (0 —0)

with
Ho(0:0') = ‘J“(lz_‘”(asz(&) +(1 - a)VZF(&)) > 0,

& € [0(00'),] and & € [(060'),0']
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Chord Jensen Divergence as a squared Mahalanobis distance
Since we have (00'), — (00")s = (o« — B)(0' — 0), it follows that
Jr((00")a = (00")) = (a = B)*(8" — 0) T HA(6,0)

Finally, from the difference of two skew Jensen divergences, it
follows that the squared Mahalanobis expression (U = 2)

S0 0y = (6 — 0)THEP(0 1 0) (¢ — 6)

HE0:0) = S 7)V2F(E) = SAL — N)(a — BPV?F(E)

(Y@ = NVEF(E) = (v = a) (v = B)VZF (L")
Therefore, we bound V' < p for P = {6;} (co: convex hull) with

NI, N

1
_ supgerpecop) [[(V2F(£))2(0" - )| .

i 1
|nf£/7§//7979/660(7)) ”(V2F(§II))2(0/ _ 9)”
and the chord gap divergence k-means++ yields a guaranteed

probabilistic initialization
20



Summary and perspectives

>

Statistical divergences D[py : pgr] on families of parametric
probabilities 7 = {py} amount to equivalent parametric
divergences D (6 : ')

For exponential families, link between skew Jensen parameter
divergences and skew Bhattacharrya statistical divergences
(and Bregman divergence with Kullback-Leibler divergence
asymptotically)

Parameter divergences can be geometrically constructed from
a convex function by taking vertical gaps in the function graph

The chord gap divergence is an extension of the skew
Jensen/Burbea-Rao divergence by taking the vertical gap
between an upper chord and a lower chord. Can be
expressed as the difference of two skew Jensen gap divergences

Perspective: Demonstrate its usefulness in applications like
clustering or statistical inference.

More in the paper and in arXiv:1709.10498
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