Autoencoder based image compression: can the learning be quantization independent?

Thierry Dumas, Aline Roumy, Christine Guillemot

INRIA Rennes, France

Transform coding

- if image pixels ~ Gaussian, optimal
- not image independent
 - ➡ need to transmit KLT basis

DCT

- if images ~ highly correlated GM process, almost optimal
- image independent

 \blacktriangleright no need to transmit DCT basis

Learning alternative transforms

From classical to universal

- Learning jointly the quantization and the transform? Towards optimality?

I – Autoencoder for image compression

empirical entropy of the $i^{\rm th}$ feature map in Y

$$\min_{\boldsymbol{\theta}, \boldsymbol{\phi}} \mathbb{E} \left[\left\| \boldsymbol{X} - g_d \left(\mathcal{Q}(g_e(\boldsymbol{X}; \boldsymbol{\theta})); \boldsymbol{\phi} \right) \right\|_2^2 \right] + \gamma \mathbb{E} \left[\sum_{i=1}^m \left[-\frac{1}{h \times w} \sum_{j=1}^{h \times w} \log_2 \left(\hat{p}_i(\hat{y}_{ij}) \right) \right] \right]$$

$$D + \gamma R$$

I – Autoencoder for image compression

II – Two learnings

 $Q = \{Q_1, Q_2, \dots, Q_m\}, \delta_i =$ quantization step size for $Q_i, i \in [1, m]$.

- Learning jointly $\{\boldsymbol{\theta}, \boldsymbol{\phi}, \delta_1, \dots, \delta_m\}$: $\min_{\boldsymbol{\theta}, \boldsymbol{\phi}, \delta_1, \dots, \delta_m} \mathbb{E} \left[\| \boldsymbol{X} - g_d(g_e(\boldsymbol{X}; \boldsymbol{\theta}) + \boldsymbol{\Delta} \odot \boldsymbol{T}; \boldsymbol{\phi}) \|_F^2 \right]$ $+ \gamma \mathbb{E} \left[\sum_{i=1}^m \left(-\log_2(\delta_i) - \frac{1}{h \times w} \sum_{j=1}^{h \times w} \log_2\left(\tilde{p}_i(y_{ij} + \delta_i \tau_{ij}) \right) \right) \right]$
- Learning $\{\boldsymbol{\theta}, \boldsymbol{\phi}\}$ while fixing $\{\delta_1, \dots, \delta_m\}$.

III - Experiments

III - Experiments

reference

rate ≈ 0.23 bpp

IV - Interpretation

Zero mean each feature map of *Y* \longrightarrow **DCT-like distribution in each feature map** of *Y*

IV - Interpretation

Was a DCT-like transform learned? No!

Thanks you for your attention!

For further details,

www.irisa.fr/temics/demos/visualization_ae/visualizationAE.htm