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SPARSE SIGNAL DETECTION
Likelihood Ratio Based Detection

MOTIVATION

» Most of the real signals are sparse
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Incoherent linear projection
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» Compressed Sensing allows for compression of

Solve for (; such that ag: C(f) =0,V

» Can we further reduce computational complex-
ity?

» Direct Laplace prior on x,, Evaluate I((;), V(.

» Energy of signal on the most likely support as
detection parameter.
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Arrange [((;) in descending order and
choose K’ indices j for the first K’ largest

[(¢;). Let U be the set containing these in-
dices
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» Algorithm
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Detection dec151on
IfA,; = Zp  192y,115 > 0, is true, oth-

erwise H is true where 6 is the threshold.

where [, ,, is given by, Outputs :

Decision

Decision statistic A,,;, Detection

sparse signals before transmission/storage and ( 232 ( N RESULTS
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that observe the sparse signals p

» The observation model at the p-th node

Inputs: @, Y = |y;, - ,yp|

Initialize (; = 0, V5. Set k = 0.
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4. Run Time Comparison
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vation reduces to k+1.
Hi:Y =X + N end While

CONCLUSION

» Algorithms developed for sparse signal detection without signal reconstruction

Ho:Y =N Detection decision:

R P .
It AMT - # Zrzl szl ,uz%,,r > (9,7'[1 1S
true, otherwise Hy is true where 6 is the

threshold.

» Each x, is modeled as a random signal.

» Reduction in computational complexity compared to the state-of-the-art algorithm.




