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MOTIVATION
� Most of the real signals are sparse

� Compressed Sensing allows for compression of
sparse signals before transmission/storage and
reconstruction when required.

� Many signal processing applications deal with
drawing an inference from received data such
as detection and classification of signals, and
estimation of signal parameters.

� Applications in sensor networks, cognitive ra-
dio networks, and radar networks.

SPARSE SIGNAL DETECTION
Likelihood Ratio Based Detection

� Direct Laplace prior on xp

� With L = p(Y |X,λ,H1)
p(Y |H0)

,
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Partial Estimate based Detection

� Idea: Signal Detection does not require com-
plete signal reconstruction.

�Three stage hierarchical prior on xp which
impose Laplace prior on signal coefficients.

� Estimate a fraction of signal.

� Algorithm

Inputs : Φ, Y = [y1, · · · ,yP ]

Initialize ζj = 0, ∀j. Set k = 0.

While k ≤ R

Select a particular ζkj out of ζk =

[ζk1 , · · · , ζkN ].

Update µp = ΣpΦ
Typ,Σp = [ΦTΦ +

Z]−1

Update algorithm parameters, and k =
k + 1 .

end While

Detection decision:
If ΛMT = 1

RP

∑R
r=1
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p=1 µ

2
p,r ≥ θ,H1 is

true, otherwise H0 is true where θ is the
threshold.

SPARSE SIGNAL DETECTION (CONTD...)
� Can we further reduce computational complex-
ity?

� Energy of signal on the most likely support as
detection parameter.

� Algorithm

Inputs : Φ, Y = [y1, · · · ,yP ]

Outputs : Decision statistic Λprj , Detection
Decision

Solve for ζj such that ∂L(ζ)∂ζj
= 0,∀j

Evaluate l(ζj),∀ζj .

Arrange l(ζj) in descending order and
choose K ′ indices j for the first K ′ largest
l(ζj). Let Û be the set containing these in-
dices

Detection decision:
If Λprj =

∑P
p=1 ‖Ωyp‖22 ≥ θ,H1 is true, oth-

erwise H0 is true where θ is the threshold.

RESULTS

1. M/N ≈ 0.49, η = 1.76 dB
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2. M/N = 0.49, η = 13.98 dB
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3. M/N = 0.1, η = 1.76 dB
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4.Run Time Comparison

CONCLUSION
� Algorithms developed for sparse signal detection without signal reconstruction

� Reduction in computational complexity compared to the state-of-the-art algorithm.

PROBLEM FORMULATION
� Consider a distributed network with P nodes
that observe the sparse signals

� The observation model at the p-th node

H1 : zp = xp + ηp

H0 : zp = ηp

� The compressed observation matrix at the FC
can be represented as

Y = ΦZ +W

� The detection problem with compressed obser-
vation reduces to

H1 : Y = ΦX +N

H0 : Y = N

� Each xp is modeled as a random signal.


