Twitter User Geolocation Using Deep Multiview Learning

Tien Huu Do, Duc Minh Nguyen, Evaggelia Tsiligianni, Bruno Cornelis, Nikos Deligiannis

Vrije Universiteit Brussel – imec , Belgium

Social Networks and Location of Users

- Location of users enable many applications
- User location profile information might be missing or ambiguous: e.g. "Small town", "Everywhere"
- ~3% of tweets are geo-tagged [3]

Reference: https://www.statista.com/statistics/272014/global-social-networks-ranked-by-number-of-users/

The Tasks of Twitter User Geolocation

 Region classification: Northeast, Midwest, West, and South

mec

- State classification: 50 states
- Geo-coordinates prediction: (*latitude*, *longitude*)

RIJF

VIVERSITEIT

Our Approaches

 Network-based: Online relationships (e.g. following, mentioning) are used for location prediction

Data Processing and Feature Extraction

- Processing:
 - Tokenization
 - Stop-word removal
 - Stemming
 - Tweets from the same user are concatenated making up a tweet document
- Feature extraction:
 - Individual word level: Term frequency-inverse document frequency (*TF-IDF*)
 - Semantic level: Doc2vec^[8]
 - User connection structure: *Node2vec*^[7] ← _____ Network feature
 - Metadata: Posting *timestamps* of tweets

Content features

User Representation as Node Embedding

Sequences of node indices are

MENET: Proposed Architecture

From Classification to Regression

- 1. Predict the state label
- 2. Predict geographical coordinates using the centroid of the state
- The centroid coordinates are calculated from the geographical coordinates available in the training set

Performance criteria

- Region and state classification: Accuracy (%)
- Geographical coordinates prediction:
 - Mean distance error (km)
 - Median distance error (km)
 - Accuracy within 161 km (~100 miles) or @161 (%)
- The distance between two locations is computed using the Haversine formula

$$\begin{split} a &= \sin^2(\Delta \phi/2) + \cos \phi_1 \cdot \cos \phi_2 \cdot \sin^2(\Delta \lambda/2) \\ c &= 2 \cdot \operatorname{atan2}(\sqrt{a}, \sqrt{(1-a)}) \\ d &= R \cdot c \\ & \phi: \text{Latitude} \\ & \lambda: \text{Longitude} \\ & \text{R: The Earth's radius} \end{split}$$

Experimental Results

Table 1. Region and state classification result on GeoText^[1] and UTGeo2011^[4]

	GeoT	Text	UTGeo2011		
	Region	State	Region	State	
	(%)	(%)	(%)	(%)	
Eisenstein <i>et al</i> . ^[1]	58	27	N/A	N/A	
Liu & Inkpen ^[2]	61.1	34.8	N/A	N/A	
Cha <i>et al</i> . [3]	67	41	N/A	N/A	
MENET	76	64.8	83.7	69	

- 9% improvement for region classification
- 23.8% improvement for state classification

Experimental Results

Table 2. Geo-coordinates prediction on GeoText^[1] and UTGeo2011^[4]

	GeoText			UTGeo2011		
	mean	median	@161	mean	median	@161
	(km)	(km)	(%)	(km)	(km)	(%)
Eisenstein <i>et al.</i> [1]	900	494	N/A	N/A	N/A	N/A
Roller <i>et al.</i> [4]	897	432	35.9	860	463	34.6
Liu and Inkpen [2]	855.9	N/A	N/A	733	377	24.2
Cha <i>et al</i> . [3]	581	425	N/A	N/A	N/A	N/A
Rahimi et al. (2015) [5]	581	57	59	529	78	60
Rahimi et al. (2017) [6]	578	61	59	515	77	61
MENET	570	58	59.1	474	157	50.5

Conclusion

- Twitter user geo-location is challenging due to noisy data.
- Combine the content and network features can improve the geolocation accuracy.
- Multi-view learning can exploit different views of Twitter data for location prediction.
- The proposed architecture can be extended with different types of features or by adding more hidden layers.
- Considering distribution of Twitter users can improve the geolocation accuracy.

References

- 1. J. Eisenstein, B. O'Connor, N. A. Smith, and E. P. Xing, "A latent variable model for geographic lexical variation", in *Conference on Empirical Methods in Natural Language Process ing*, 2010, pp. 1277–1287.
- 2. J. Liu and D. Inkpen, "Estimating user location in social media with stacked denoising auto-encoders", in *Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies*, 2015, pp. 201–210.
- 3. M.Cha, Y.Gwon, and H.T.Kung, "Twitter geolocationandre- gional classification via sparse coding", in *International AAAI Conference on Web and Social Media*, 2015, pp. 582–585.
- 4. S. Roller, M. Speriosu, S. Rallapalli, B. Wing, and J. Baldridge, "Supervised textbased geolocation using language models on an adaptive grid", in *Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning*, 2012, pp. 1500–1510.

References

- 5. A.Rahimi, T.Cohn, and T.Baldwin, "Twitter user geolocation using a unified text and network prediction model", in *Annual Meeting of the Association for Computational Linguistics and the International Joint Conference on Natural Language Processing*, 2015, pp. 630–636.
- 6. A. Rahimi, T. Cohn, and T. Baldwin, "A neural model for user geolocation and lexical dialectology", in *Annual Meeting of the Association for Computational Linguistics*, 2017, pp. 209–216.
- 7. A. Grover and J. Leskovec, "node2vec: Scalable feature learning for networks", in ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016, pp. 855-864
- 8. T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, "Distributed representations of words and phrases and their compositionality", in *Advances in neural information processing systems*, 2013, pp. 3111–3119.

Thank you for your attention !

{ thdo, mdnguyen, etsiligi, bcorneli, ndeligia }@etrovub.be

