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Background

Many practical datasets have intrinsic low-dimensional structures
despite the high ambient dimension.

The low dimensional structures have been extensively studied in
problems like Low-Rank Matrix Completion (LRMC) and Robust
Principal Component Analysis (RPCA).

Example: well-known Netflix Prize Problem
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Background

Example: RPCA for Background Subtraction [Zou et al., 2014]
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Background

Most existing work assume that the low-dimensional structure does
not change over time and consider one fixed low rank matrix. The
temporal variation of the low-dimensional structure has not been
much investigated.

For example, users’ preferences for the movies may change over time.
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Existing Work on Time-varying Low-dimensional Models

Parametric models like hidden Markov models
[Mohammadiha et al., 2013], [Mysore et al., 2010] and autoregression
models [Hall et al., 2015], [Mohammadiha et al., 2015] have been
employed to model the temporal correlations and demonstrated
encouraging numerical performance, but the theoretical study is very
limited.

RPCA with the weak temporal correlations was studied in
[Zhan et al., 2016], and the theoretical analysis only holds when the
temporal correlations of the data points are relatively weak.

[Xu et al., 2016] proposed a model of a sequence of dynamically
correlated matrices through slow varying subspaces. They assume
that each matrix is low-rank, but the sparse errors are not considered
in [Xu et al., 2016].
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Our Contributions

Our model generalizes from the one in [Xu et al., 2016] by
additionally modeling sparse errors in the measurements. To the best
of our knowledge, this is the first analytical study of robust matrix
completion of temporally correlated matrices with partially corrupted
measurements.

We formulate the problem as a nonconvex optimization problem and
theoretically characterize the recovery error. We also propose a fast
iterative method to solve the nonconvex problem approximately and
show that the algorithm can always converge to a critical point, while
[Xu et al., 2016] has no convergence guarantee for their algorithm.
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Problem Formulation

Let L̄t ∈ Rn1×n2 denote the actual data at time t, and let C̄ t ∈ Rn1×n2

denote the sparse additive errors in the measurements at time t.

The temporal correlations are modeled as a sequence of low-rank
matrices with correlated low-dimensional subspaces. Specifically, let
X̄ t ∈ Rn1×n2 denote the measurements at time t,

X̄ t = L̄t + C̄ t = Ūt(V̄ t)T + C̄ t , (1)

where L̄t has rank at most r , Ūt ∈ Rn1×r , V̄ t ∈ Rn2×r , and C̄ t has at
most s nonzero entries.
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Problem Formulation

Pengzhi Gao, Ren Wang, and Meng Wang April 20, 2018 9 / 29



Problem Formulation

Let Z t ∈ Rn1×n2 represent the measurement noise. Ωt is the set of
observed entries in X̄ t with |Ωt | = mt . The partial observed
measurements can be presented by

y t = PΩt (X̄ t + Z t), (2)

where PΩt : Rn1×n2 → Rmt
is a linear operator.

The data recovery question is stated as follows. Given partially
observed and corrupted measurements {y t} for t = 1, ..., d , can we
recover the actual data L̄d?
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Assumptions

Assume ‖L̄t‖∞ ≤ α and ‖C̄ t‖∞ ≤ α for some constant α.

Without loss of generality, we assume V̄ t changes over time, while Ūt

is fixed to be Ū such that we have L̄t = Ū(V̄ t)T .

For the sake of simplicity in our analysis, we consider a simple model
on V̄ t as follows.

V̄ t = V̄ t−1 + εt , t = 2, ..., d , (3)

where εt represents the perturbation noise in V̄ t .

Pengzhi Gao, Ren Wang, and Meng Wang April 20, 2018 11 / 29



Proposed Approach

We estimate (L̄d , C̄d) by (L̂, Ĉ ), where

(L̂, Ĉ ) = arg min
(L,C)

1

2

d∑
t=1

ωt‖PΩt (L + C )− y t‖2
2,

s.t. L + C ∈ C(r , s, α),

(4)

and the feasible set C(r , s, α) is defined as

C(r , s, α) := {X ∈ Rn1×n2 : X = L + C , ‖L‖∞ ≤ α, ‖C‖∞ ≤ α,

rank(L) ≤ r ,
∑
ij

1[Cij 6=0] ≤ s}. (5)

Problem (4) is nonconvex due to the nonconvexity of C(r , s, α).
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Theoretical Result

Theorem 1

If

m0 ≥
c1n1n2 log(n1 + n2)(

√
2 log(d(n1 + n2)n1n2)σ2

max + 2α)2

5nmax
∑d

t=1 ω
2
t (σ2

1 + (d − t)σ2
2) + 2α2(

√
2nmax + 4s

nmin
)
, (6)

the estimator (L̂, Ĉ ) from (4) satisfies

1

n1n2
‖L̂ + Ĉ − L̄d − C̄d‖2

F ≤ max(B1,B2),

with probability at least 1− 11
n1+n2

− 7dnmaxe
−nmin , where B1 and B2 are

coefficients depending on n1, n2, m0, and d .
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Comments on Theoretical Result

Assume n1 and n2 are in the same order O(n).

When the measurements do not contain corruptions, i.e. C̄ t ’s are all
zeros, [Xu et al., 2016] showed that if m0 ≥ O(n(log(n))2), we have

‖L̂− Ld‖2
F/n1n2 ≤ max(O(

√
log n/m0),O(n log n/m0)), (7)

when the feasible set is imposed by the rank constraint.

If s = O(n), i.e., the number of corrupted measurements per row is
bounded, we have if m0 ≥ O(n(log(n))2),

‖L̂ + Ĉ − Ld − Cd‖2
F/(n1n2) ≤ max(B1,B2), (8)

where B1 = max(O(
√

log n
m0

),O( log n
n )) and B2 = O(n log n

m0
). Note that

(8) diminishes to zero when n increases, and (8) is in the same order
as the result in [Xu et al., 2016].
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Comments on Theoretical Result

If we choose ωt = 1
d for t = 1, ..., d , one can check that (6) becomes

m0 ≥ O( log d
d )× f (n), which implies that the required number of

observations of each matrix is reduced by a factor of O( log d
d ) when d

increases.

One can also check that two terms in B2 decrease with the increasing
of d , which means the recover error reduces by exploiting the
temporal dynamic in the low rank matrices.
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Algorithm

An algorithm to solve the non-convex optimization problem
approximately.

We factorize the low-rank matrix L into L = UV T with U ∈ Rn1×r

and V ∈ Rn2×r .

In each iteration, we fix the current estimation of C and optimize
over U and V by an approximate projected gradient method.

We then fix U and V and update the estimation of C by a gradient
descent method. A hard thresholding is applied to C afterwards by
keeping s entries with the largest absolute values and setting others
to zero.

We also show that every sequence generated by the proximal
algorithm converges to a critical point of the optimization problem.
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Simulation on Synthetic Data

We compare our method with one convex method
[Klopp et al., 2017] for robust matrix completion (RMC), which
solves the following convex problem:

min
L,C

1

|Ωd |
‖PΩd (L + C )− yd‖2

2 + λ1‖L‖∗ + λ2‖C‖1

s.t. ‖L‖∞ ≤ α and ‖C‖∞ ≤ α.
(9)

The weights {ωt} in our method are set to be ( 1
d , ...,

1
d ).

The recovery performance is measured by the relative recovery error
‖L̂− L̄‖F/‖L̄‖F .
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Simulation on Synthetic Data

Set n1 = 50, n2 = 50, r = 5. Construct L̄t ∈ Rn1×n2 as L̄t = Ū(V̄ t)T ,
where Ū ∈ Rn1×r and V̄ ∈ Rn2×r are matrices with i.i.d. entries
drawn from standard Gaussian distribution.
For all t ≥ 2, V̄ t = V̄ t−1 + εt , where matrix εt is drawn from
Gaussian distribution N (0, σ2

2). Noise matrix Z t is drawn from
Gaussian distribution N (0, σ2

1).
Set s = 500, σ1 = 0.01, and σ2 = 0.03.
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Simulation on Synthetic Data

Set d = 3 and keep the other simulation setup the same.
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Figure: Relative recovery error of the convex RMC method and our method
according to different corruption rate (d = 3 in our method).
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Simulation on Actual Video Dataset

Figure: Video frames only including the first RGB value with the additional
Gaussian noise drawn from N (0, 0.042).

Choose 180 frames and construct a 2073600× 180 matrix, where each
columns represents a frame and 60 columns make up the matrix L̄t .

Form L̄1, L̄2, and L̄3 by reducing the dimension to L̄t ∈ R270×60 for
t = 1, 2, 3. Set r = 5.
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Simulation on Actual Video Dataset

Under different corruption rates (5%, 10%, 15%, 20%), we run our
algorithm with different d .
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Figure: Relative recovery error of our method according to different d .
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Simulation on Actual Video Dataset

Set d = 2 and keep the other simulation setup the same.
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Figure: Relative recovery error according to different corruption rate (d = 2).
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Conclusions & Future Work

We study the dynamic matrix recovery problem from partially
observed and erroneous measurements.

The dynamic matrix recovery problem is formulated as a non-convex
optimization problem.

The recovery error of our proposed method diminishes as the problem
size increases, and the error decays in the same order as that of the
state-of-the-art data recovery method with uncorrupted
measurements.

A proximal algorithm with convergence guanrantee is proposed to
solve the non-convex problem approximately.

One future direction is to study the global convergence of the
algorithm.
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Theoretical Result

σ2
max = max

t
ω2
t (
µ2

0r

n1
σ2

2(d−t)+σ2
1),B1 = 16α2 max(

√
c2

log(n1 + n2)

m0 log(6/5)
,

log(n1 + n2)

2n1 log(6/5)
),

B2 =
256α2

m0
(176ec2

3 rnmax log(n1 + n2)
d∑

t=1

ω2
t +

3456

5
n1

+8c3

√
rs

√
2e log(n1 + n2)

∑d
t=1 ω

2
tm0

nmin
) +

16α
√

2sκr

m0

+
32r

m0
log(n1 + n2)κ+

32α2

n1n2
+

32α

m0

√
κs log(n1 + n2),

κ = 256nmax

d∑
t=1

ω2
t (σ2

1 + (d − t)σ2
2) + 16α2p2s + 192α2(

√
2

2
nmax +

2s

nmin
),

and c1, c2 and c3 are constants.
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