
Economic	 	A	location-unaware	and	time-unaware	
mobile	sensor	will	avoid	the	costs	of	GPS,	
other	accurate	localization	mechanisms,	
and	a	precise	clock	

Social	 A	location-unaware	sensor	will	preserve	
the	privacy	of	the	mobile	sensor	(assuming	
it	is	with	a	social	device)	

Academic	 What	is	the	fundamental	impact	of	not	
knowing	the	sample	locations	in	spatial	
field	reconstruction	problems?	
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Introduction	

Motivation	 Related	works	

Three	different	PDEs	were	examined:	
-  g(x, 0)	was	generated	by	uniformly	distributed	

Fourier	series	coefficients.	The	final	field	was	
scaled	to	ensure	|g(x, 0)| ≤ 1 

-  The	initial	field	evolved	with	the	following	PDEs:	
-  Eq. 1, p = (2, 3, 0), q = (- 0.000125, 0, 

0.01, 0, 0) 
-  Eq. 2, p = (1, 3, 0), q = (0.01, 0, 0) 
-  Eq. 3, p = (1, 0), q = (0.01, 0, 0) 

-  A	benchmark	was	also	used	where	locations	of	
samples	were	random	but	known	

Simulations	

Conclusions	and	future	work	
-  Spatiotemporal	and	initially	bandlimited	
fields	evolving	by	a	linear	PDE	can	be	
reconstructed	from	location-unaware	
samples	taken	on	an	unknown	renewal	
process	

-  The	mean-squared	error	scales	as	O(1/n),	
where	n	is	the	average	number	of	samples	

-  The	regression	framework	is	universal,	since	
neither	it	requires	the	renewal	process	
distributions	nor	the	noise	distribution	

	
-  Exploration	of	two-dimensional	spatial	fields	
is	of	interest	

-  Exploration	of	approximately	bandlimited	
field’s	sampling	and	reconstruction	is	of	
interest	

Consider	a	sampling	problem,	where	a	spatio-
temporal	field	governed	by	a	linear	constant	
coefficient	partial	differential	equation	(PDE)	is	
sampled	by	a	mobile	sensor.	Contrast	the	following:	

space	

field	

space	

field	

classical:	uniform	sampling	
with	known	timestamps	

our	work:	both	the	location	
and	timestamps	of	mobile	

sensor	are	unknown	

The	sampling	process	can	be	depicted	via	the	following	plots:	

Analytical	setup	
Spatial	field	model		

A	 finite	 support	 field	 that	 is	 spatially	 bandlimited	 field	with	
bandwidth	b	

g(x, t) =
bX
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Field	evolves	according	to	a	known	constant	coefficient	linear	
PDE,	such	as	the	heat	equation	
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or	more	generally	by	

Analytical	setup	

In	details	
-  sensing	starts	at	x = 0, t = 0	ends	before	x = 1, t = Tf 
-  the	intersample	distances	are	a	realization	of	an	

unknown	renewal	process	
-  the	intersample	times	are	a	realization	of	another	

independent	unknown	renewal	process	

Sampling	location	and	sampling	time	model	

The	 mean	 of	 M	 is	 the	
average	 sampling	 density,	
i.e.,		n	(0,0)	 (1,0)	

(1,Tf)	

space	

time	 Sampling	points	form	two	
independent		unknown	
renewal		processes	in	space	
and	in	time	

•  g(x, t)	can	be	written	as	an	inner	product,	of	
Fourier	basis	dependent	vectors	and	location	
dependent	coefficients	

g(si, ti) = e(si)
Ha(ti)

•  Using	linearity	in	the	Fourier	coefficients,	the	
problem	is	cast	as	a	linear	regression	to	estimate	
the	Fourier	coefficients	at	t = 0		

•  where	g	is	a	vector	formed	by	measurement-noise	
affected	 samples,	 Y is	 a	 matrix	 formed	 by	 the	
location	dependent	vectors	and	b	 is	the	vector	of	
target	Fourier	coefficients	

•  For	regression,	the	(location-time)	pair	of	samples	
are	approximated	as	

Ti ≈ iTf /M	and	Si ≈ i/M 

Âk(0) = argmin
b

||g � Y b||22

Our	inference	algorithm	

Distortion	criterion	

Theorem:	Let	Âk(0), – b ≤ k ≤ b	be	the	output	of	
our	inteference	algorithm.	Then,	the	mean-
squared	error	and	therefore	the	distortion	D	is	
bounded	as	

Main	Result	
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Noise	model	

It	is	assumed	that	each	measured	sample	g(x, t)	is	
affected	by	an	independent	and	identically	
distributed,	zero-mean,	finite	variance	noise	W(x, t) 
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Theorem’s	illustration:	
The	field’s	bandwidth	
is	b = 3,	and	its		
coefficients	at	t = 0 
are	generated	from	
uniformly	distributed	
random	variables.		
The	diffusion	equation	
was	used	as	PDE:	

Mobile	sensing:	
-  Unnikrishnan	and	Vetterli’2013	(the	idea	of	using	a	

mobile	sensor	and	associated	aliasing/path	density	
tradeoffs)	

-  Kumar’2017	(location-unaware	mobile	sensing	
with	temporally	fixed	fields)	

Ongoing	developments	in	location-unaware	sensing:	
-  Kumar’2015	(scattered	location-unaware	sensors	

and	associated	results)	
-  Pacholska,	Haro,	Scholefield,	Vetterli’2017	

(uniqueness	constraints	for	ensuring	field	
reconstruction)	

-  SLAM	algorithm	and	its	variants	

For sampling density exceeding the number of Fourier coef-
ficients n > m(2b + 1), this can be solved as a linear least
squares estimation (regression). The solutions are [15]
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where the second equation gives the exact Fourier coefficients
of the field. The distortion in (4) is upper-bounded by
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We now state our main result in the following theorem.

Theorem 3.1. Let â and a be defined in equation (19). Then
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Proof. For details see [16]. The proof utilizes the properties
of the matrix Y0. Let A = (Y H
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where Cauchy-Scwharz inequality is used and �
A

max is the
largest eigenvalue of AH

A. Now, it can be shown that
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where tr(AH
A) means the trace of the A

H
A. Since noise is

assumed to be zero mean, independent, and finite variance, so
the second term in (23) satisfies
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From [16], tr((Y H

0 Y0)�1)  (Ct/M) for some constant Ct.
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from (8). In [16], it has been proved that
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for some constants, Cs and CT , independent of n. The in-
equalities in (25), (26), and (27) in (23) shows the result.

4. SIMULATIONS

Simulation results are presented in this section. A sam-
ple field gsample(x, 0) with b = 3 was generated. Its a0[k]
Fourier coefficients for k � 0 were generated using inde-
pendent Uniform[�1, 1] random variables for the real and
imaginary parts. Conjugate symmetry was used to obtain
a0[k] for negative k. The field was finally scaled to have
|g(x)|  1. The following PDEs with initial condition
gsample(x, 0) were used for simulations. The PDEs considered
are: (i) p1(z) = z

2 + 3z, q1(z) = 0.01(z2 � 0.0125z4); (ii)
p2(z) = z

2 + 3z, q2(z) = 0.01z2; and, (iii) p3(z) = z,
q3(z) = 0.01z2. The last one is diffusion equation. The inter-
sample distances were generated from Uniform[0.5/n, 1.5/n]
distribution, while the timestamps were generated from
Uniform[0.6/n, 1.4/n]. Measurement noise was assumed
to be independent Gaussian with variance �

2 = 0.125. The
mean-squared error for our estimates are illustrated in Fig. 2
for above three PDEs. The mean-squared error has slope of
�1 in log-log plot confirming O(1/n) decay. To benchmark
our regression, distortion is also compared when regression
is performed with field samples equi-spaced in location and
time. To our surprise there is negligible difference between
the benchmark and the location-unaware regression.

Fig. 2. The plots show that the distortion scales as O(1/n)
(see Theorem 3.1) for the three PDEs in Section 4.

5. CONCLUSIONS

The sampling of spatially bandlimited field evolving accord-
ing to the constant coefficient linear partial differential equa-
tion using a mobile sensor was studied. The field was es-
timated using the noisy samples obtained at unknown loca-
tions and time instants obtained from two independent and
unknown renewal processes and it was shown that the mean
squared error between the estimated field and the true field
decreased as O(1/n), where n was the average sampling den-
sity. The main idea that was leveraged was the fact that the

-  The	renewal	
processes	
were	
generated	
using	
uniformly	
distributed	
random	
variables	

The	key	result	of	our	paper	as	well	as	its	challenge	is	
an	analytical	proof	of	the	above	


