Neural Network Language Modeling with Letter-based Features and Importance Sampling

Overview				
• Extends Kaldi toolkit to support neural-based				
language modeling;				
• Combining subword features (letter <i>n</i> -grams)				
and one-hot encoding of frequent words to				
handle large vocabularies containing infrequent				
words;				
• Propose a new objective function that allows				
for training of unnormalized probabilities;				
• Propose an importance sampling based				
method to speed up training when the				
vocabulary is large;				
• Kaldi-RNNLM trains faster than a number of				
other toolkits;				
 Kaldi-RNNLM achieves better perplexities and 				
rescoring word-error-rates compared to a				
number of other toolkits.				

Use of Subword Features

- Kaldi-RNNLM combines the use of subword features and one-hot encoding of frequent words to generate word-embeddings;
- Input-embedding and Output-embedding are tied;
- We currently use letter n-grams up to 3-grams, done at script level, and this could be easily expanded.

Cross-entropy Objective Function

We write \mathbf{z} as the layer of the neural network before the final softmax operation, and j as the index for the correct word, then cross-entropy is computed as,

$$z_j - \log \sum_i \exp(z_i) \tag{1}$$

Hainan Xu¹, Ke Li¹, Yiming Wang¹, Jian Wang², Shiyin Kang³, Xie Chen⁴, Daniel Povey¹, Sanjeev Khudanpur¹ ¹Center for Language and Speech Processing, Johns Hopkins University; ²Toutiao Al Lab, Beijing, China; ³Tencent Al Lab, Shenzhen, China; ⁴Machine Intelligence Laboratory, Cambridge University

New Objective Function

Note that $\log x \leq x - 1$, we define the following objective function,

$$z_j + 1 - \sum_i \exp(z_i) \tag{2}$$

Analysis of the Objective

- (2) = (1) iff $\sum_{i} \exp(z_i) = 1;$
- The objective is a lower bound on the cross-entropy objective, with equality when the output is a well-normalized distribution;
- When the new objective is maximized, it is similar to cross-entropy training plus a penalty term that makes the output of the network sum to a value close to 1 $(\sum_{i} \exp(z_i) \simeq 1);$
- During test time, we use z_i as the computed "probability" as an approximation since we know the expectation of $1 - \sum_{i} \exp(z_i)$ is 0.

Importance-Sampling

To compute

$$\sum_{i} f(x_i)$$

We define

$$_{i} = \begin{cases} \frac{f(x_{i})}{p_{i}}, & \text{with probability } p_{i} \\ 0, & \text{otherwise} \end{cases}$$
(3)

Then

$$\mathbb{E}[y_i] = \mathbb{E}[f(x_i)] \tag{4}$$

$$\mathbb{E}[\sum_{i} y_{i}] = \mathbb{E}[\sum_{i} f(x_{i})]$$
(5)

 $\sum_{i} y_i$ has a lot of zeros which is easy to compute.

Neural Network Training with **Importance Sampling**

- If we use importance-sampling to compute cross-entropy loss, then the log operation makes the estimate biased; • Equation (2) takes the sum out of the log, making it possible to use importance-sampling to compute an unbiased estimate of the objf; • Any distribution for p_i is OK, but the closer it is to the ground-truth, the faster the convergence;
- We sample words from the averaged *n*-gram distribution of a minibatch;

Evaluation

We compare Kaldi-RNNLM with CUED-RNNLM and TensorFlow-RNNLM on 5 datasets. We report perplexities, word-error-rates as well as training speed.

	dataset	CUED	TF	KALDI
AMI	train	52.2	49.1	47.0
	dev	76.5	82.1	72.2
HUB4	train	99.7	131.2	73.7
	dev	197.5	192.0	180.7
SWBD	train	37.7	46.7	43.4
	dev	52.0	54.3	47.5
WSJ	train	39.1	37.4	43.4
	dev	67.2	64.5	50.9
TED-LIUM	train	123.3	133.4	96.3
	dev	169.6	154.7	137.0
Table 1: Perplexities of Different RNNLMs				

Perplexity

AM

HUE

SWB

WS

TED-L

*: baseline already rescored with a 4-gram arpa model.

CU CUE Ten Kaldi-R Kaldi-R

*Evaluation is done on a Tesla K10.G2.8GB GPU.

This work was partially supported by DARPA LORELEI award number HR0011-15-2-0024, NSF Grant No CRI-1513128 and IARPA MATERIAL award number FA8650-17-C-9115.

Email: hxu31@jhu.edu

Word-error-rate						
	1					
	dataset	Baseline	CUED	Ί'Η'	KALDI	
ΊI	dev	24.2	23.0	23.2	22.8	
	eval	25.4	23.9	24.2	23.9	
B4	test	14.4	12.8	13.1	12.6	
3D	swbd	8.0*	7.0	7.1	7.0	
SJ	dev93	7.1^{*}	6.1	6.0	5.8	
	eval92	5.0^{*}	3.9	3.8	3.9	
JUM	dev	10.7^{*}	10.3	10.4	9.9	
	test	9.8*	9.3	9.3	9.0	
				D		

Table 2: WER of Lattice-rescoring of Different RNNLMs

Training Speed

RNNLM	Speed (words/second)
ED-RNNLM, CE	8.30K
ED-RNNLM, NCE	12.8K
nsorFlow-RNNLM	23.3K
RNNLM, no sampling	18.3K
RNNLM, 512 samples	31.0K
able 3: Training Speed* of	Different RNNLMs

Acknowledgements

Contact Information

• Web: http://www.hainanxv.com