
Commonly Identified Feature Generation 
The stitching of binocular views based on those features from the same edge, corner, or 

object will maintain the stereo consistency between the left and right views. For 

simplicity, we only consider the general task of stitching two pairs of input rectified 

stereoscopic images 𝐼𝐿1, 𝐼𝑅1, 𝐼𝐿2 and 𝐼𝑅2. We define four randomly chosen feature 

descriptors (e.g., SIFT or SURF) from the four images as 𝑑1, 𝑑2, 𝑑3 and 𝑑4 respectively. 

Each descriptor contains one vector 𝑑𝑖 . 𝑣 to record the gradient in multiple directions, and 

two scalars 𝑑𝑖 . 𝑥 and 𝑑𝑖 . 𝑦 $ for the center point position. The score to evaluate the 

correspondence between them is defined as follows:
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The first term above refers to the Euclidean distance between any two feature descriptors. 

The second and third terms are the vertical position difference between two matched 

center points. The last term is the difference in depth from triangulation between the left 

and right views. The symbol f is the focal length and b is the baseline.

Thus, the construction of the commonly identified feature set could be decomposed into 

multiple optimization problems for each extracted feature descriptor:
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Purpose
In this paper, we present one saliency-based feature selection and tracking strategy in the 

feature-based stereoscopic panoramic video generation system. Many existing 

stereoscopic video composition approaches aims at producing high-quality panoramas 

from multiple input cameras[1], [2], [3], [4], [5]; however, most of them directly operate 

image alignment on those originally detected features without any refinement or 

optimization. The standard global feature extraction threshold always fails to guarantee 

stitching correctness of all human interested regions. Thus, based on the originally 

commonly identified feature set, we incorporate the saliency map into the distribution of 

control points to remove the redundancy in texture-rich regions and ensure the adequacy 

of selected features in visual sensitive regions. The experiments show that our method 

can improve the stitching quality of visual important region without impairment to the 

human less-interested regions in the generated stereoscopic panoramic video.

Outline
In this paper, the proposed general disparity control strategy is established based on the 

construction of a commonly identified feature set. Then, we combine the disparity map, 

gradient map and saliency map into one energy map that indicates the visual importance 

of each pixel in the image. Given the total number of control points we intends to sample, 

we select those best-matched commonly-identified features in each grid. In the feature 

tracking process, we also do the local feature update based on the change of energy in 

each grid.
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Conclusion
In this paper, we presented a feature selection and tracking strategy that optimizes the 

distribution of control points in panoramic video generation system according to the saliency 
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Table 1: 

Numerical Comparison of panorama case.

Visual improvement in Stitched Panorama/Video

Fig. 7: Comparison of stereoscopic panoramic video stitching result

Fig. 1:  Constructed commonly-identified 

feature set: The control points only 

connected by red line in vertical or 

horizontal direction will be rejected. Only 

the control points connected by yellow line 

in both of vertical or horizontal direction 

will be selected for Commonly-identified 

feature set.

Autopano PTGui Hugin Proposed

RMSE 19.61px 12.39px 9.04px 8.55px

Vertical Disp 0.39° 0.20° 0.31° 0.20°

Horizontal Dist 0.42° 0.47° 0.35° 0.34°

Table 2: 

Numerical Comparison of video case

Quantitative Comparison

Fig. 2 Images from left to the Right are: (a) Original images; (b) Depth map; (c) Gradient map; (d) 

Saliency map; (e) Energy map; (f) Grid map; (g) Grid map with assigned visual weight.

Saliency-based Feature Selection
To generate visual sensitivity map with more sharp boundary, one energy fusion function [6] is 

used to combine the gradient map and GBVS-based saliency map [7] as:

𝑒 𝑖, 𝑗 = 𝛼1 ∗ 𝐷𝑒𝑝 𝑖, 𝑗 + 𝛼2 ∗ 𝐺𝑟𝑎𝑑 𝑖, 𝑗 + 𝛼3 ∗ 𝑆𝑎𝑙 𝑖, 𝑗
For each grid 𝐺𝑝.𝑞, its corresponding normalized weight is defined as:
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Given the total number of control points (dented as T), we select the best matched 

CIF(commonly-identified feature) in each grid as control points:
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𝐵𝑝,𝑞 is the number of cp we sample in each grid, R is the matching score for candidates

Local Feature Update Strategy
Step1: Grid classification to determine which grid need feature update

Step2: Run KLT tracking in adjacent camera views simultaneously

Step3: Filter the tracking result with proposed depth-related constraints

Step4: Fill those missing control point slot with retrieved position

(a)                      (b)                              (c)                       (d)                     (e)           (f)                   (g)

Fig. 3 Matched control point pair before 

and after feature selection.

Fig. 4 Images from Left to the Right are: (a) Grid 

map between consecutive frames (b) Grid-level 

energy change map (c) Indicator map.

Fig. 5 Update result comparison between different strategies: (a) original detected features; (b) purely 

detected; (c) purely tracking; (d) proposed strategy.

Fig. 6 Comparison of stereoscopic panorama stitching result

RMSE V Disp H Dist

NFS+1.3m 9.73px 0.19° 0.94°

NFS+2.0m 2.46px 0.13° 0.63°

NFS+3.3m 1.81px 0.10° 0.35°

SFS+1.3m 8.45px 0.05° 0.12°

SFS+2.0m 2.06px 0.06° 0.11°

SFS+3.3m 1.03px 0.05° 0.11°


