DEEP BLIND IMAGE QUALITY ASSESSMENT BY LEARNING SENSITIVITY MAP

Jongyoo Kim, Woojae Kim and Sanghoon Lee

ICASSP 2018

Deep Learning and Convolutional Neural Networks (CNNs)

SOTA in computer vision & image processing

SC / 34.29 dB

ANR / 35.13 dB

SRCNN / 35.01 dB

Super-resolution

NIVERSIT

Saliency detection

Depth map from single image

Problems of Applying CNN to Image Quality Assessment (IQA)

Lack of Training Dataset

Dataset size	Label (target)	Augmentation
<i>ImageNet database</i> Millions of labeled images (1.6M)	Semantic object meaning via Crowdsourcing Easy decision (short time)	Possible
 LIVE IQA database 29 reference images, → 5 distortion types & 6~7 levels 982 distorted images TID2013 25 reference images → 17 distortion types & 4 levels 1,700 distorted images, 	Subjective score via Subjective test Hard decision (long time) Controlled environment Creating a large-scale database is a formidable problem	Only horizontal reflection Any image transformation can change the label
Distorted images are highly Correlated with each other YONSEI		Multidimensional

An attempt to increase the dataset for IQA

Distorted image

Divided image patches

Local quality score for each patch is different

Multidimensional

Transfer Learning (Image Recognition \rightarrow IQA) ?

Major ISSUE of Applying CNN for IQA

Modeling of Accurate Human Visual Perception

- Bandpass, multiscale, and directional decompositions
- Contrast / Texture Masking
- Luminance Adaption
- Etc.

Motivation – find the Visual Sensitivity in a data-driven way

A Distorted Image (JPEG 2000)

Motivation – Deep Learning of Human Visual Sensitivity

- DeepQA learns the visual sensitivity without any prior knowledge
- Using distorted image, objective error map, subjective score

Objective error map (Derived by simple distance metric) $e = err(I_r, I_d)$

YONSEI UNIVERSITY Perceptual error map

Utilizing local objective score as a proxy ground truth

Reference image

Distorted image

Local objective score (called Error Map in this paper)

Motivation – Previous Work

J. Kim and S. Lee, "Deep learning of human visual sensitivity in image quality assessment framework," CVPR 2017.

DeepQA – Full Reference Image Quality Assessment

Proposed Deep Blind Quality Assessment (BQA)

In the first stage, an objective error map is used as a proxy training target to expand the dataset labels.

Learning Objective Error Map (1st stage)

Obtaining Objective Error Maps

Error map: $\mathbf{e}_{gt} = |\hat{I}_r - \hat{I}_d|^p$ p = 0.2
Loss Function

$$\mathcal{L}_e(\hat{I}_d, \hat{I}_r; \theta_1) = \left\| (CNN_1(\hat{I}_d; \theta_1) - \mathbf{e}_{gt}) \odot \hat{\mathbf{r}} \right\|_2^2$$

Reliability Map Prediction

Blurry Regions have lower reliability than textured regions

Error Maps

Reliability Maps

(h)

(i) Insight

Learning Sensitivity Map (2nd stage)

Loss Function

Perceptual error map

$$\mathbf{p} = \mathbf{s} \odot \mathbf{e} \odot \hat{\mathbf{r}}.$$
$$\mathbf{s} = CNN_2(\hat{I}_d; \theta_2)$$

- s: sensitivity map
- e: error map
- **r**: reliability map

Loss function

$$\mathcal{L}_s(\hat{I}_d; \theta_1, \theta_2) = \|(\underline{f}(\mu_{\mathbf{p}}) - S)\|_2^2$$

MLP regression

Learning Sensitivity Map (2nd stage)

- Total Variation L2 Norm (Regularization)
 - Purpose
 - To smooth the sensitivity map
 - Why?
 - Differentiable,
 - Can be added to the loss function for SGD with ease

$$TV(\mathbf{s}) = 1/HW \cdot \sum \left(sobel_h(\mathbf{s})^2 + sobel_v(\mathbf{s})^2\right)^{\beta/2}$$

Sobel filtered sensitivity map

$$L(I_{d};\theta) = w_{subj} \left\| f(\mu_{p}) - S \right\|_{F}^{2} + w_{TV}TV(s)$$
smoothing (Total variation)

 $w_{TV} = 10^{-3}$

Three IQA Databases

Database	Ref.	Dist.	Dist. Types	Score Type
LIVE IQA	29	779	5	DMOS
CSIQ	30	866	6	DMOS
TID2013	25	3,000	24	MOS

- LIVE IQA: H. Sheikh, M. Sabir, and A. Bovik, "A statistical evaluation of recent full reference image quality assessment algorithms," *IEEE Trans. Image Process.*, vol. 15, no. 11, pp. 3440–3451, 2006.
- CSIQ: E. C. Larson and D. M. Chandler, "Most apparent distortion: Full-reference image quality assessment and the role of strategy," *J. Electron. Imaging*, vol. 19, no. 1, pp. 19–19 –21, 2010.
- **TID2013**: N. Ponomarenko, L. Jin, O. Ieremeiev, V. Lukin, K. Egiazarian, J. Astola, B. Vozel, K. Chehdi, M. Carli, F. Battisti, and C. C. Jay Kuo, "Image database TID2013: Peculiarities, results and perspectives," *Signal Processing: Image Communication*, vol. 30, pp. 57–77, 2015.

Experiment and Analysis

Experimental Setting (Common)

- Evaluation metrics
 - Spearman's rank order correlation coefficient (SRCC)
 - Pearson's linear correlation coefficient (PLCC)

$$SRCC = 1 - \frac{6\sum_{i} d_{i}^{2}}{n(n^{2} - 1)} \qquad PLCC = \frac{\sum_{i} (\hat{S}_{i} - \mu_{\hat{S}})(S_{i} - \mu_{S})}{\sqrt{\sum_{i} (\hat{S}_{i} - \mu_{\hat{S}})^{2}} \sqrt{\sum_{i} (S_{i} - \mu_{S})^{2}}}$$

- Training and testing sets
 - For each repetition, reference images were **randomly divided** into two subsets, **80% for training** and **20% for testing**.
 - Then, the corresponding distorted images were divided into the two subsets.
 - Horizontally flipped images were supplemented to the training set.

Predicted Sensitivity Maps based on Regularization

Total Variation L2 Norm Regularization

	TV regularization weight (w_{TV} =)					
Metric	0	10^{-4}	10^{-3}	10^{-2}	10^{-1}	
SRCC	0.961	0.965	0.966	0.971	0.969	
PLCC	0.963	0.966	0.967	0.972	0.970	

Error and Perceptual Error Maps Visualization

Error Maps Visualization

Error and Perceptual Error Maps Visualization

Perceptual Error Maps Visualization

Benchmark Result

SRCC and PLCC Comparison on the 5 Databases

		LIVE IQA		CSIQ		TID2013	
		SRCC	PLCC	SRCC	PLCC	SRCC	PLCC
FR	PSNR	0.876	0.872	0.806	0.800	0.636	0.706
	SSIM	0.948	0.945	0.876	0.861	0.775	0.691
	FSIMc	0.963	0.960	0.931	0.919	0.851	0.877
	DeepQA	0.981	0.982	0.961	0.956	0.939	0.947
NR	BLIINDSII	0.912	0.916	0.780	0.832	0.536	0.628
	BRISQUE	0.939	0.942	0.775	0.817	0.572	0.651
	CORNIA	0.942	0.943	0.714	0.781	0.549	0.613
	IL-NIQE	0.902	0.908	0.821	0.865	0.521	0.648
	GMLOG	0.950	0.954	0.803	0.812	0.675	0.683
	BIECON	0.958	0.962	0.825	0.838	0.721	0.765
	<i>DeepBQA</i>	0.970	0.971	0.858	0.879	0.843	0.868

• *Italic*. Deep learning

Conclusion

- Error map Pixel-level data augmentation
- Reliability map Getting a more accurate sensitivity map
- Sensitivity map Analysis of human visual system
- Perceptual error map Delivery of insight of human perception on distortion
- DeepBQA achieved state of the art performance

