

Deep Feature Embedding Learning for Person Re-Identification Using Lifted Structured Loss

Zhangping He, Zhendong Zhang, and **Cheolkon Jung** School of Electronic Engineering Xidian University, China

Person Re-Identification

- Person Re-id: Given a query, find the matched pedestrians across multiple cameras, viewed as an image retrieval problem
- Challenges
 - Low resolution video images
 - Viewpoint changes
 - Changes in human body poses
 - Illumination variations
 - Background clutters
 - Occlusions

Viewpoint

Occlusion

Feature Embedding Learning

Feature embedding:

- Given feature x, we get f(x).
- Map similar points to close ones and different points to distant ones, become more discriminative
- Robust to pose changes
- Obtained by deep neural networks
- Feature embedding learning:
 - Metric learning by optimizing loss function

 $D_{i,j}^{2} = \left\| f(x_{i}) - f(x_{j}) \right\|_{2}^{2}$

Contrastive Loss (CVPR 2006)

Contrastive loss:

- Minimize positive pair distances while penalizing negative pair distances
- Contrastive embedding is trained on paired data $\{(x_i, x_j, y_{i,j})\}$

$$L_{Contrastive} = \frac{1}{2m} \sum_{i=1}^{m} \left\{ y_{i,j} D_{i,j}^{2} + (1 - y_{i,j}) \left[\alpha - D_{i,j}^{2} \right]_{+} \right\}$$

m: Number of images; (x_i, x_j) : Pair; $D_{i,j}^2 = ||f(x_i) - f(x_j)||_2^2$: Distance where *f* is feature embedding output; $y_{i,j} \in \{0,1\}$: Same class or not;

 $[\cdot]_{+}$: Hinge loss;

$$\underbrace{pull}_{\Rightarrow=\alpha} \underbrace{push}_{\Rightarrow=\alpha} \bullet$$

Triplet Loss (CVPR 2015)

Triplet loss:

- Introduced for face recognition and clustering;
- Less greedy than contrastive loss due to using Anchor
- Triplet data $\{(x_a^i, x_p^i, x_n^i)\}$: $\{(x_a^i, x_p^i)\}$ -Same class, $\{(x_a^i, x_n^i)\}$ Different class;
- Loss function:

$$L_{\text{triplet}} = \frac{1}{2m} \sum_{i=1}^{m} \max\{0, D_{ia,ip}^2 - D_{ia,in}^2 + \alpha\} \qquad D_{i,j}^2 = \|f(x_i) - f(x_j)\|_2^2$$

Lifted Structured Loss (CVPR 2016)

• Lifted Structured loss:

- Make a **full use of batch information** based on all positive and negative pairs of samples in the training set, but non-smooth
- Use a smooth upper bound in the loss function

$$\tilde{L}_{\text{lifted}} = \frac{1}{2\left|\hat{P}\right|} \sum_{(i,j)\in\hat{P}} \max(0,\tilde{L}_{i,j})^2$$

$$\tilde{L}_{i,j} = \log(\sum_{i,k\in\hat{N}} e^{\alpha - D_{i,k}} + \sum_{j,l\in\hat{N}} e^{\alpha - D_{j,l}}) + D_{i,j}$$

$$O_{x_1} = \sum_{x_2} O_{x_3} O_{x_4} O_{x_5} O_{x_6} O_{x_1} O_{x_2} O_{x_3} O_{x_4} O_{x_5} O_{x_6} O_{x_1} O_{x_5} O_{x_6} O_{x_5} O_{x_6} O_{x_5} O_{x_6} O_{x$$

Proposed Method

Proposed Lifted Structured Loss:

- The number of negative samples is varying (not equal) compared with positive pairs, and thus the number of the summation term is uncertain.
- Imbalance between the log term and $D_{i,i}$

• We use the mean of log term so that $L_{i,j}$ is robust to the difference between positive and negative pairs.

• Also, we use $D_{i,j}^2$ for **fast convergence** instead of $D_{i,j}$ ($L_{i,j}$: [α -4, α])

Proposed Method

• Proposed Lifted Structured Loss:

$$L_{i,j} = \log\left(\frac{1}{|\hat{T}_{i,j}|} \left(\sum_{(i,k)\in N} e^{\alpha - D_{i,k}^{2}} + \sum_{(j,l)\in N} e^{\alpha - D_{j,l}^{2}}\right)\right) + D_{i,j}^{2}$$
$$L_{struct} = \frac{1}{2|\hat{P}|} \sum_{(i,j)\in \hat{P}} \max(0, L_{i,j})$$

Combination with Identification Loss:

$$q_{i} = \operatorname{softmax}(W_{i}^{T} f(x))$$
$$L_{id} = \sum_{i} -p_{i} \log q_{i}$$
$$L = L_{struct} + \lambda L_{id}$$

Proposed Method

Network Architecture:

- 9 Convolutional layers: 3×3 filters with stride 1 and zero paddings.
 - Dimensions from Conv1 to Conv9: 32, 32, 32, 64, 96, 128, 192, 256, 384.
- 4 Max pooling layers: 2×2 filters with stride 2.
- Batch normalization after each convolutional layer or FC layer to speed up the training.
- Leaky rectified linear unit (LReLU) is used after these layers.

• Datasets:

• CUHK01, CUHK03 and VIPeR

Data Preparation:

- We resize all training images to 128×48.
- We sample 3 images around an image center with small translation and augment the data with images reflected on a vertical mirror: Total 5 images from one image.
- Evaluation Protocol:
 - Cumulative match curve (CMC) metric

• Parameter Setting:

- *λ* = 1.0;
- SGD: Initial learning rate 0.001, decayed by 0.1 after 20,000 iterations.
- α in structured loss is 3.0, while α in contrastive and triplet losses is 1.0. Batch size: 64, iteration number: 30,000.

• Two sets of experiments:

- Evaluation of the proposed loss with contrastive loss and triplet loss
- Performance comparison with state-of-art person re-id methods.

Red box: Identified person

Loss Function Comparison:

• Experiments under the same CNN architecture with different loss functions (Steps for training)

Experiments on CUHK03 (Labeled, Detected)

Tabl	Table 1. Accuracy Comparison on CUHK03 (Labeled)				
_	methods	rank1	rank5	rank10	
_	kLFDA[18]	48.20	59.34	66.38	
_	IDLA[5]	54.74	86.50	94.00	
_	NullRe-id[19]	58.90	85.60	92.45	
_	Ensembles[20]	62.10	89.10	94.30	
_	Gated Siamese[3]	68.10	88.10	94.60	
	NX-Corr M[21]	72.43	95.51	98.40	
_	Proposed	81.9	96.7	98.7	

Table 3. Accuracy C	omparison on CU	HK03 (Detected)
---------------------	-----------------	-----------------

methods	rank1	rank5	rank10
IDLA[5]	45.0	76.0	83.5
NullRe-id[19]	53.70	83.05	93.00
Siamese LSTM[24]	57.3	80.1	88.3
Joint Learning[25]	52.17	85.00	92.00
Gated Siamese[3]	61.8	80.9	88.3
NX-Corr M[21]	72.04	96.00	98.26
Improved Embedding [4]	82.1	96.2	98.2
Proposed	79.9	97.1	98.7

• Experiments on CUHK01 and VIPeR

Small size dataset

Table 2. Accuracy	ble 2. Accuracy Comparison on CUHK01				
methods	rank1	rank5	rank10		
IDLA[5]	47.5	71.6	80.3		
NullRe-id[19]	69.1	86.9	91.8		
MCP-CNN[7]	53.7	84.3	91.0		
NX-Corr M[21]	65.04	89.76	94.4		
Proposed	70.2	90.2	95.5		

Table 4. Accuracy C	omparison on virek			
methods	rank1	rank5	rank10	
Joint Learning[25]	35.8	-	-	
Gated Siamese[3]	37.8	66.9	77.4	
Siamese LSTM[24]	42.4	68.7	79.4	
Ensembles[20]	45.9	77.5	88.9	
MCP-CNN[7]	47.8	74.7	84.8	
SCSP[23]	53.5	82.6	91.5	
NullRe-id[19]	51.2	82.1	90.5	
Improved Embedding[4]	50.4	77.6	85.8	
LSSCDL[22]	42.7	84.3	91.9	
Proposed	47.3	76.6	88.1	

Table 4 Accuracy Comparison on VIPeP

15

Conclusions

- Deep feature embedding learning for person re-id based on lifted structured loss.
 - The proposed person re-id is based on CNN, and combines lifted structured loss and identification loss into loss function.
 - 1) Feature embedding on test images using CNN, i.e deep feature embedding learning
 - 2) Normalization of embedding into a unit vector
 - 3) Computing the distance between all pairs from two camera views
- Experimental results
 - Proposed method outperforms state-of-the-arts on CUHK01 and CUHK03
 - A little worse on VIPeR, i.e. small size dataset

THANK YOU!