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Introduction
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Goal
Determine whether two multivariate time series possess the same
(matrix-valued) power spectral density at every frequency

Applications

I Spectrum sensing

I Physical-layer security

I Comparison of gas pipes

I Earthquake-explosion discrimination

I · · ·



Introduction (II)
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Previously proposed detectors

I Frequency-domain detectors
I Non-parametric detectors based on periodograms
I Generalized likelihood ratio test (GLRT)
I Extensions of tests for homogeneity of covariance matrices

I Time-domain detectors

Main objective
Study the existence of optimal detectors



Problem formulation
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N Samples N Samples

L
S
en
so
rs

x1[n] x2[n]

...
...

Stack of N observations
yi =

[
xTi [0] · · · xTi [N − 1]

]T
Hypothesis test
Defining y = [yT1 yT2 ]T and assuming Gaussianity

H1 : y ∼ CN (0,RH1)
H0 : y ∼ CN (0,RH0)



Problem Formulation (II)
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Covariance matrices under both hypotheses

RH1 =

[
R1 0
0 R2

]
RH0 =

[
R0 0
0 R0

]
where, under H1, R1 6= R2 and R1 = R2 = R0 under H0

Covariance matrices of each process

Ri = E [yiy
H
i ] =

 Mi [0] · · · Mi [N − 1]
...

. . .
...

Mi [N − 1] · · · Mi [0]


where Mi [m] = E [xi [n]xHi [n −m]]

Block-Toeplitz structure

I Not enough invariances for deriving optimal detectors



Rewriting the likelihoods: Asymptotic Case
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Asymptotic case

I Asymptotically approximate block-Toeplitz matrices by
block-circulant ones: MSE convergence of the likelihoods

=⇒

Block-circulant matrices

Ri ≈ (FN ⊗ IL)Si (FN ⊗ IL)H

block-diagonal with blocks

Si (e
jθk ) =

N−1∑
n=0

Mi [n]e−jθkn

Fourier matrix



Rewriting the likelihoods: Asymptotic Case (II)
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Transformation of the observations
Transform the observations as z = [zT1 zT2 ]T with

zi = (FN ⊗ IL)H yi

Asymptotic likelihood of z

log p(z(0), . . . , z(M−1);SHi
) ∝ − log det(SHi

)− tr
(
S−1Hi

Ŝ
)

where

Ŝ =
1

M

M−1∑
m=0

z(m)z(m)H

and

SH1 =

[
S1 0
0 S2

]
SH0 =

[
S0 0
0 S0

]



Rewriting the likelihoods: Asymptotic Case (III)
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Covariance matrices in the frequency domain

I Si is block-diagonal with block size L

L× L blocks

S1 (= S0) S2 (= S0)



Rewriting the likelihoods: Asymptotic Case (III)
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Covariance matrices in the frequency domain

I Si is block-diagonal with block size L

L× L blocks

S1 S2



Derivation of the LMPIT: Wijsman’s Theorem
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Typical approach for deriving the UMPIT (or LMPIT)

I Problem invariances and transformation group

I Maximal invariant statistic

I Densities of the maximal invariant statistic

I Ratio of the densities of the maximal invariant statistic

I (Local approximation of the ratio)

Wijsman’s Theorem

L =

∫
G p (g(x);H1) |det(Jg )|dg∫
G p (g(x);H0) |det(Jg )|dg

Maximal invariant statistic and its distributions not required



Derivation of the LMPIT: Invariances
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Problem invariances

I Multiply Si by a block-diagonal matrix (block size L)

I Reorder the frequencies (for both processes)

I Relabel the processes on a frequency-by-frequency basis

Invariant group

G =
{
g : z→ g(z) = G̃z

}
with

G̃ = (I2 ⊗ G)

(
N∏

k=1

Pk ⊗ IL

)
(I2 ⊗ T⊗ IL)



Non-existence of the UMPIT/LMPIT
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Ratio of the distributions of the maximal invariant

L =

∑
T,P1,...,PN

∫
GN

|det(G)|4M exp
{
−Mtr

(
S−1H1

G̃ŜG̃H
)}

dG

∑
T,P1,...,PN

∫
GN

|det(G)|4M exp
{
−Mtr

(
S−1H0

G̃ŜG̃H
)}

dG

after a lot of algebra and a Taylor series

LMPIT?

L ∝
2∑

i=1

N∑
k=1

‖Ĉi ,k‖2 + α

2∑
i=1

N∑
k=1

tr2(Ĉi ,k)

where

Ĉi ,k =

[
1

2

(
Ŝ1,k + Ŝ2,k

)]−1/2
Ŝi ,k

[
1

2

(
Ŝ1,k + Ŝ2,k

)]−1/2



Non-existence of the UMPIT/LMPIT (II)
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LMPIT-inspired detectors

L1 =
2∑

i=1

N−1∑
k=0

‖Ĉi (e
jθk )‖2F L2 =

2∑
i=1

N∑
k=1

tr2(Ĉi (e
jθk ))

where

Ĉi (e
jθ) =

[
1

2

2∑
i=1

Ŝi (e
jθ)

]−1/2
Ŝi (e

jθ)

[
1

2

2∑
i=1

Ŝi (e
jθ)

]−1/2

LMPIT for univariate time series (L = 1)

L ∝
N−1∑
k=0

Ŝ2
1 (e jθk ) + Ŝ2

2 (e jθk )[
1

2

(
Ŝ1(e jθk ) + Ŝ2(e jθk )

)]2



Numerical results
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System model

xi [n] =
T−1∑
τ=0

Hi [τ ]si [n − τ ] + vi [n], i = 1, 2

where

I si [n] ∈ CQ are independent QPSK signals

I vi [n] ∈ CL are independent white noises

I H1[n] is a Rayleigh MIMO channel with unit energy, spatially
uncorrelated, and exponential pdp with parameter ρ

I H2[n] =
√

1−∆hH1[n] +
√

∆hE[n]



Numerical results (II)
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∆h = 0.1 under H1 and ∆h = 0 under H0. The number of
transmitted signals is Q = 1



Numerical results (III)

15

−4 −2 0 2 4
10−4

10−3

10−2

10−1

100

SNR (dB)

p
m

logG
L1

L2

∆h = 0.1 under H1 and ∆h = 0 under H0. The number of
transmitted signals is Q = 5



Conclusions
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I We have proved the non-existence of the UMPIT/LMPIT for
testing whether two multivariate signals posses the same PSD

I For univariate time series we have derived the LMPIT

I We have proposed two LMPIT-inspired detectors


