Optimal Crowdsourced Classification with a Reject Option in the Presence of Spammers

Qunwei Li, Pramod Varshney

Syracuse University

1 Introduction

- 2 Problem Formulation
- **3** Optimal Behavior for a Spammer
- Optimal Behavior for the Manager
- 5 Simulations

1 Introduction

- 2 Problem Formulation
- 3 Optimal Behavior for a Spammer
- Optimal Behavior for the Manager
 - 5 Simulations
- 6 Conclusion

Humans and Machines

- Besides the success of machine learning techniques
- Machines need proper training
- Machines need a tremendous amount of labeled training data

Pattern Search

Data Interpretation

ICASSP 2018

Crowdsourcing

- A major source to provide training data for machines
- Crowd + Sourcing = Crowdsourcing

Crowdsourcing Example

Crowdsourcing Example

Qunwei Li, Pramod Varshney

ICASSP 2018

Crowdsourcing

• Key Features

- Members of the crowd are anonymous
- Spammers in the crowd

Crowdsourcing

- Key Features
 - Members of the crowd are anonymous
 - Spammers in the crowd
- What is a spammer?
 - only cares about reward in participating in a crowdsourcing task
 - completes the questions with random guesses
 - typically completes all the questions in the task
- Problems to address
 - How to maximize the reward (How would the spammers behave?)
 - How to get reliable performance (How would the task manager behave?)

1 Introduction

2 Problem Formulation

3 Optimal Behavior for a Spammer

- 4 Optimal Behavior for the Manager
 - 5 Simulations

Problem

- $\bullet~W$ crowd workers take part in an $M\mbox{-}\mathrm{ary}$ classification task
 - Example: labeling of dog image into one of four breeds (M = 4): Pekingese, Mastiff, Maltese, or Saluki

Problem

- Workers answer N simple binary questions to distinguish among classes (Branson et al., 2010)
 - Example: snub or long nose?

A. Vempaty, L. R. Varshney and P. K. Varshney, "Reliable Crowdsourcing for Multi-Class Labeling Using Coding Theory," in IEEE JSTSP, 2014.

Qunwei Li, Pramod Varshney

ICASSP 2018

Syracuse University

Problem

- Workers have a reject option to skip the questions
 - Example: snub or long nose? large or small?

Q. Li, A. Vempaty, L. R. Varshney and P. K. Varshney, "Multi-Object Classification via Crowdsourcing With a Reject Option," in IEEE TSP, 2017.

Qunwei Li, Pramod Varshney

ICASSP 2018

Syracuse University

11 / 23

1 Introduction

2 Problem Formulation

③ Optimal Behavior for a Spammer

4 Optimal Behavior for the Manager

5 Simulations

6 Conclusion

• Shah and Zhou 2016 found the one and only incentive-compatible payment mechanism for the considered crowdsourcing system

- Shah and Zhou 2016 found the one and only incentive-compatible payment mechanism for the considered crowdsourcing system
- A mechanism is called incentive-compatible if every participant can achieve the best outcome for him/herself just by acting according to his/her true preferences

- Shah and Zhou 2016 found the one and only incentive-compatible payment mechanism for the considered crowdsourcing system
- A mechanism is called incentive-compatible if every participant can achieve the best outcome for him/herself just by acting according to his/her true preferences
- A spammer can maximize their reward if such a payment mechanism is employed

- Shah and Zhou 2016 found the one and only incentive-compatible payment mechanism for the considered crowdsourcing system
- A mechanism is called incentive-compatible if every participant can achieve the best outcome for him/herself just by acting according to his/her true preferences
- A spammer can maximize their reward if such a payment mechanism is employed

Theorem

The optimal behavior for a spammer is to complete or skip all the microtasks, according to a problem-dependent quantity.

- Conventionally, a spammer completes all the microtasks in hope for maximal reward.
- Assume M_A spammers complete all the microtasks
- Assume M_0 spammers skip all the microtasks
- A total of $M = M_A + M_0$ spammers in the crowd of size W

1 Introduction

- 2 Problem Formulation
- 3 Optimal Behavior for a Spammer

Optimal Behavior for the Manager

5 Simulations

6 Conclusion

- A widely used aggregation rule is majority voting
 - Each worker has a weight of "1" for his/her answer
 - For each microtask, the answer with the most collected overall weight is chosen

Qunwei Li, Pramod Varshney

ICASSP 2018

Syracuse University

• Can we design an optimal aggregation rule for classification with crowdsourcing?

- Can we design an optimal aggregation rule for classification with crowdsourcing?
- A straightforward idea:

maximize Overall Weight for the Correct Class subject to Overall Weight for All the Classes is Bounded

- Can we design an optimal aggregation rule for classification with crowdsourcing?
- A straightforward idea:

maximize Overall Weight for the Correct Class subject to Overall Weight for All the Classes is Bounded

Theorem

The optimal weight for the wth worker's answer is given by

$$W_w = \left[(W - M) \,\mu^n + \frac{M_A}{2^N (1 - m)^N} \delta \,(n - N) \right]^{-1},$$

n: number of microtaskes completed

Parameter Estimation

- $\bullet\ m$: averaged probability of a skipped microtask
 - * can be estimated directly

Parameter Estimation

- $\bullet\ m$: averaged probability of a skipped microtask
 - * can be estimated directly
- μ : averaged probability of a correct answer
 - * insert additional G "gold standard" questions

Parameter Estimation

- $\bullet\ m$: averaged probability of a skipped microtask
 - * can be estimated directly
- μ : averaged probability of a correct answer
 - * insert additional G "gold standard" questions
- M_A : number of spammers who complete all the microtasks
- M_0 : number of spammers who skip all the microtasks
 - * W_{N+G} denotes the number of workers completing all N + G microtasks, and W_0 denotes the number of workers skipping all the microtasks.
 - * using the estimated m, write the joint probability function of W_{N+G} and W_0 , $f(W_{N+G}, W_0 | M_N, M_0)$
 - * with the MLE method, estimate M_A and M_0 by

$$\left\{\hat{M}_{A}, \hat{M}_{0}\right\} = \arg\max_{\{M_{A}, M_{0}\} \ge 0} f(W_{N+G}, W_{0}|M_{A}, M_{0}).$$
(1)

1 Introduction

- 2 Problem Formulation
- 3 Optimal Behavior for a Spammer
- 4 Optimal Behavior for the Manager

5 Simulations

6 Conclusion

Simulation Results

- $W = 50, N = 3, G = 3, M_A = M_0 = 7$
- A honest worker skips a microtask ~ U(0,1)
- A honest worker correctly answers a microtask $\sim U(x, 1)$

Figure 1: Performance comparison with various spammers.

Qunwei Li, Pramod Varshney

ICASSP 2018

1 Introduction

- 2 Problem Formulation
- 3 Optimal Behavior for a Spammer
- Optimal Behavior for the Manager

5 Simulations

- Investigated the impact of the spammers on the crowdsourced classification system
- Derived the optimal strategy for the manager to combat the spammers' influence.
- Showed the performance improvement with the proposed aggregation rule

Thank you !