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Introduction

Introduction

Problem: DL channel estimation in FDD
Massive MIMO systems.

Training overhead as one of the main
performance bottlenecks.
Classical designs, which impose a training time
equal to the number of BS antennas, are
unfeasible.

Available solutions rely on lower dimensional
representation of the channel vectors.

1 Compressed sensing based.
2 Second-order statistics based.

Focus on the second category.
Knowledge of the DL channel spatial covariance
matrix Rd is crucial.

Main Contribution

In the following we propose an e↵ective algorithm to obtain an estimate of Rd from UL
measurements only, by converting it from the UL spatial covariance Ru.

3 / 16



Introduction

Why UL to DL Spatial Covariance Conversion?

Compared to traditional feedback based approaches (e.g. DL sample covariance),
continuous covariance feedback from the UE is eliminated.

If long term beamforming based on Rd is applied, DL training could be completely
eliminated.
Operators can immediately apply the proposed scheme to boost the already
implemented beamforming and CSI acquisition algorithms in perfect compliance
with current standards.

The proposed mechanism for DL covariance estimation is completely transparent to
the UEs.
Example: Boost the codebook based CSI acquisition techniques, by projecting the
selected codeword onto the estimated channel subspace.
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Model

System Model

h :=
⇥
h1 h2 · · · hN

⇤T
.

h1 
h2 

hN 

Base Station (BS) 
N antennas 

User Equipment (UE) 
1 antenna 

Downlink (DL) 

Uplink (UL) 

Figure: Flat-fading channel between a massive MIMO BS and a single-antenna UE.
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Model

Channel Model

By assuming for simplicity 2D propagation and unpolarized antennas:

Channel spatial covariance matrix

R(f ) := E[h(f )hH(f )] =

Z ⇡

�⇡

⇢(✓)a(✓, f )aH(✓, f )d✓

h 2 CN⇥1 is the channel vector.

a : [�⇡,⇡]⇥ R+ ! CN⇥1 is the frequency dependent BS antenna array response.

⇢ : [�⇡,⇡] ! R+ is the angular power spectrum (APS), describing the channel
average power density in the angular domain.

Main assumptions

Angular reciprocity: ⇢ is assumed to be frequency invariant for reasonable duplex
gaps (order of 100 MHz).

Windowed-WSS assumption: R is assumed to be constant for a su�ciently long
time frame TWSS (typical values 1� 10 s).
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Channel Spatial Covariance Conversion Using Projection Methods Overview

Algorithm Overview

Goal: UL to DL covariance conversion.

UL and DL covariance matrices

Ru =

Z ⇡

�⇡

⇢(✓)au(✓)au(✓)Hd✓ (1)

Rd =

Z ⇡

�⇡

⇢(✓)ad(✓)ad(✓)Hd✓ (2)

The proposed scheme can be summarized into two steps as follows:

1 We obtain an estimate ⇢̂ of the APS ⇢ based on the knowledge of Ru, the equality in
(1), and known properties of ⇢.

2 We compute an estimate of Rd from (2), by substituting ⇢ with its estimate ⇢̂.

We assume perfect knowledge of the array responses.

Core idea

Unlike related studies, we formalize the APS estimation problem as a convex feasibility
problem, so that we can apply very e↵ective solutions based on projection methods in an
infinite-dimensional Hilbert space.
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Channel Spatial Covariance Conversion Using Projection Methods Algorithm 1 - Projection onto a Linear Variety

Algorithm 1 - Projection onto a Linear Variety I

Let us consider the Hilbert space H of real functions in L

2[�⇡,⇡] equipped with the
inner product hf , gi := R ⇡

�⇡
f (✓)g(✓)d✓.

We can rewrite

Ru =

Z ⇡

�⇡

⇢(✓)au(✓)au(✓)Hd✓

as a system of equations of the form

r

u
m = h⇢, g u

mi

rum 2 R is the mth element of ru := vec
�⇥
<{Ru} ={Ru}

⇤�
.

gu
m : [�⇡,⇡] �! R is the mth element of vec

�⇥
<{au(✓)au(✓)H} ={au(✓)au(✓)H}

⇤�
.

Convex Feasibility Problem

find ⇢⇤ 2 V :=
M\

m=1

Vm,

where Vm := {⇢ 2 H : h⇢, g u
mi = r

u
m} are hyperplanes in H.
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Channel Spatial Covariance Conversion Using Projection Methods Algorithm 1 - Projection onto a Linear Variety

Algorithm 1 - Projection onto a Linear Variety II

Among all the possible solutions of the feasibility problem, all equivalent based only
on the information we have, we choose the minimum norm solution

⇢̂(✓) = arg min
⇢⇤2V

k⇢⇤k =
MX

m=1

↵mg
u
m(✓),

where ↵ := [↵1 . . .↵M ] is a solution to the linear system

ru = Gu↵,

Gu =

2

6664

hg u
1 , g

u
1 i hg u

1 , g
u
2 i . . . hgu

1 , g
u
Mi

hg u
2 , g

u
1 i hg u

2 , g
u
2 i . . . hgu

2 , g
u
Mi

...
...

. . .
...

hg u
M , g u

1 i hgu
M , g u

2 i . . . hgu
M , gu

Mi

3

7775
,

which corresponds to the orthogonal projection PV (0) of the zero vector onto the
linear variety V .
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Channel Spatial Covariance Conversion Using Projection Methods Algorithm 1 - Projection onto a Linear Variety

Algorithm 1 - Projection onto a Linear Variety III

We finally obtain an estimate of Rd by replacing ⇢ in the DL covariance expression
with its estimate ⇢̂:

r̂

d
m = h⇢̂, gd

mi =
MX

l=1

↵lhg u
l , g

d
mi m = 1, . . . ,M,

which can be rewritten in matrix form as

r̂d = Q↵,

where r̂d is an estimate of the vector rd := vec(
⇥<{Rd} ={Rd}⇤), ↵ is a solution to

the linear system ru = Gu↵, and

Q =

2

6664

hg d
1 , g

u
1 i hg d

1 , g
u
2 i . . . hgd

1 , g
u
Mi

hg d
2 , g

u
1 i hg d

2 , g
u
2 i . . . hgd

2 , g
u
Mi

...
...

. . .
...

hg d
M , g u

1 i hg d
M , g u

2 i . . . hgd
M , g u

Mi

3

7775
.
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Channel Spatial Covariance Conversion Using Projection Methods Algorithm 1 - Projection onto a Linear Variety

Summary

In summary, the algorithm can be implemented as follows:

Algorithm 1

1 ru := vec
�⇥<{Ru} ={Ru}⇤�

2 r̂d = Q(Gu)†ru

3 R̂d = vec�1(̂rd)

where (Gu)† is the Moore-Penrose pseudoinverse of Gu.

Note:

Q(Gu)† need to be computed just once for the entire system lifetime.
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Channel Spatial Covariance Conversion Using Projection Methods Algorithm 2 - Enforcing the Positivity of the APS

Algorithm 2 - Enforcing the Positivity of the APS I

We recall that ⇢ is a real and non-negative
function.

The real constraint is already taken into
account by Algorithm 1.
But not the non-negativity!

Problem

find ⇢⇤ 2 C := V \ Z ,

where Z = {⇢ 2 H : 8✓ 2 [�⇡,⇡] ⇢(✓) � 0} is the
closed convex set of non-negative functions in H, and
V is the linear variety considered before.

Wide literature of iterative projection methods
for solving this class of convex feasibility
problems.

We adopt a fast method called extrapolated
alternating projection method (EAPM), a
particular case of the adaptive projected
subgradient method.

Z

V

PV(0)

PZ(PV(0))

martedì 16 gennaio 18

Figure: A simple and popular example
of iterative projection method:
projections onto convex sets (POCS).
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Channel Spatial Covariance Conversion Using Projection Methods Algorithm 2 - Enforcing the Positivity of the APS

Algorithm 2 - Enforcing the Positivity of the APS II

The projection PV : H ! H onto the set V is given by

PV (x) = x �
MX

m=1

�mg
u
m + PV (0),

with � := [�1 . . .�M ] being a solution to the linear system b = Gu� where the mth
element of b is given by bm = hx , g u

mi.
The projection PZ : H ! H is given by

PZ (x) =

(
x(✓), if x(✓) � 0

0, otherwise
.

An estimate of Rd can be finally obtained by evaluating

r̂

d
m = h⇢̂, g d

mi m = 1, . . . ,M.

where, unlike Algorithm 1, ⇢̂ is here computed explicitly with the given iterative
projection method.

Algorithm 2 is more complex: it requires the online evaluation of the inner products,
i.e. integrals of the form

R ⇡
�⇡ x(✓)d✓.
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Channel Spatial Covariance Conversion Using Projection Methods Comparison with State-of-the-art Techniques

Simulation Details

BS array: ULA, f u = 1.8 GHz, f d = 1.9 GHz, half-wavelength inter-antenna
spacing.

Analytical expression for Gu and Q is available.

Ru and Rd randomly drawn, based on the following GSCM-like channel model:

⇢(✓) =
QX

q=1

fq(✓)↵q, fq ⇠ N
⇣
�q,�

2
q

⌘
, ↵q � 0 s.t.

X

q

↵q = 1.

The BS has access to a sample covariance R̂u obtained from 1000 noisy channels
samples, with SNR randomly drawn from [10, 30] dB.

Comparison with state-of-the-art techniques for UL to DL spatial covariance
conversion. The DL sample covariance, obtained with the same technique and
parameters as for the UL, is used as a baseline.
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Channel Spatial Covariance Conversion Using Projection Methods Comparison with State-of-the-art Techniques

Simulation Results

Normalized Euclidean distance

MSE := E
"
kR� R̂k2F
kRk2F

#
.

4 6 8 10 12 14 16 18 20
10

-3

10
-2

10
-1

10
0

Figure: Comparison of di↵erent DL covariance estimators
vs number of BS antennas N.
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Conclusion

Advantages of the Proposed DL Covariance Estimation Scheme

No particular geometry of the array response in assumed.

No training set is required.
The performance approaches the baseline given by the DL sample covariance.

Furthermore, it can be shown that this holds also when applied to some practical CSI
aquisition techniques.

Algorithm 1 is extremely simple (a matrix-vector multiplication).
Furthermore, the performances in terms of rate in practical applications are already
close to the bound given by the DL sample covariance.

Due to its generality, it can be shown that the proposed scheme can be extended
also to more complex channel models that take into account 3D propagation and
polarization e↵ects.
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