FDD Channel Spatial Covariance Conversion Using Projection Methods

Presented by Lorenzo Miretti
Coauthored by Renato L.G. Cavalcante and Slawomir Stańczak

2018 IEEE International Conference on Acoustics, Speech and Signal Processing

Calgary, Canada
19 April 2018

Heinrich Hertz Institute

Contents

(1) Introduction
(2) Model
(3) Channel Spatial Covariance Conversion Using Projection Methods

- Overview
- Algorithm 1 - Projection onto a Linear Variety
- Algorithm 2 - Enforcing the Positivity of the APS
- Comparison with State-of-the-art Techniques

4 Conclusion

Introduction

- Problem: DL channel estimation in FDD Massive MIMO systems.
- Training overhead as one of the main performance bottlenecks.
- Classical designs, which impose a training time equal to the number of BS antennas, are unfeasible.
- Available solutions rely on lower dimensional representation of the channel vectors.
(1) Compressed sensing based.
(2) Second-order statistics based.

- Focus on the second category.
- Knowledge of the DL channel spatial covariance matrix \mathbf{R}^{d} is crucial.

Main Contribution

In the following we propose an effective algorithm to obtain an estimate of \mathbf{R}^{d} from UL measurements only, by converting it from the UL spatial covariance \mathbf{R}^{u}.

Why UL to DL Spatial Covariance Conversion?

- Compared to traditional feedback based approaches (e.g. DL sample covariance), continuous covariance feedback from the UE is eliminated.
- If long term beamforming based on \mathbf{R}^{d} is applied, DL training could be completely eliminated.
- Operators can immediately apply the proposed scheme to boost the already implemented beamforming and CSI acquisition algorithms in perfect compliance with current standards.
- The proposed mechanism for DL covariance estimation is completely transparent to the UEs.
- Example: Boost the codebook based CSI acquisition techniques, by projecting the selected codeword onto the estimated channel subspace.

System Model

- $\boldsymbol{h}:=\left[\begin{array}{llll}h_{1} & h_{2} & \cdots & h_{N}\end{array}\right]^{T}$.

Base Station (BS)
N antennas

User Equipment (UE)
1 antenna

Figure: Flat-fading channel between a massive MIMO BS and a single-antenna UE.

Channel Model

By assuming for simplicity 2D propagation and unpolarized antennas:
Channel spatial covariance matrix

$$
\mathbf{R}(f):=\mathbb{E}\left[\mathbf{h}(f) \mathbf{h}^{H}(f)\right]=\int_{-\pi}^{\pi} \rho(\theta) \mathbf{a}(\theta, f) \mathbf{a}^{H}(\theta, f) d \theta
$$

- $\mathbf{h} \in \mathbb{C}^{N \times 1}$ is the channel vector.
- a : $[-\pi, \pi] \times \mathbb{R}^{+} \rightarrow \mathbb{C}^{N \times 1}$ is the frequency dependent BS antenna array response.
- $\rho:[-\pi, \pi] \rightarrow \mathbb{R}^{+}$is the angular power spectrum (APS), describing the channel average power density in the angular domain.

Main assumptions

- Angular reciprocity: ρ is assumed to be frequency invariant for reasonable duplex gaps (order of 100 MHz).
- Windowed-WSS assumption: \mathbf{R} is assumed to be constant for a sufficiently long time frame $T_{\text {WSS }}$ (typical values $1-10 \mathrm{~s}$).

Algorithm Overview

Goal: UL to DL covariance conversion.

UL and DL covariance matrices

$$
\begin{align*}
& \mathbf{R}^{u}=\int_{-\pi}^{\pi} \rho(\theta) \mathbf{a}^{u}(\theta) \mathbf{a}^{u}(\theta)^{H} d \theta \tag{1}\\
& \mathbf{R}^{d}=\int_{-\pi}^{\pi} \rho(\theta) \mathbf{a}^{d}(\theta) \mathbf{a}^{d}(\theta)^{H} d \theta \tag{2}
\end{align*}
$$

The proposed scheme can be summarized into two steps as follows:
(1) We obtain an estimate $\hat{\rho}$ of the APS ρ based on the knowledge of $\mathbf{R}^{\mathbf{u}}$, the equality in (1), and known properties of ρ.
(2) We compute an estimate of $\mathbf{R}^{\mathbf{d}}$ from (2), by substituting ρ with its estimate $\hat{\rho}$.

We assume perfect knowledge of the array responses.

Core idea

Unlike related studies, we formalize the APS estimation problem as a convex feasibility problem, so that we can apply very effective solutions based on projection methods in an infinite-dimensional Hilbert space.

Algorithm 1 - Projection onto a Linear Variety I

- Let us consider the Hilbert space \mathcal{H} of real functions in $L^{2}[-\pi, \pi]$ equipped with the inner product $\langle f, g\rangle:=\int_{-\pi}^{\pi} f(\theta) g(\theta) d \theta$.
- We can rewrite

$$
\mathbf{R}^{u}=\int_{-\pi}^{\pi} \rho(\theta) \mathbf{a}^{u}(\theta) \mathbf{a}^{u}(\theta)^{H} d \theta
$$

as a system of equations of the form

$$
r_{m}^{u}=\left\langle\rho, g_{m}^{u}\right\rangle
$$

- $r_{m}^{u} \in \mathbb{R}$ is the m th element of $\mathbf{r}^{u}:=\operatorname{vec}\left(\left[\Re\left\{\mathbf{R}^{u}\right\} \quad \Im\left\{\mathbf{R}^{u}\right\}\right]\right)$.
- $g_{m}^{u}:[-\pi, \pi] \longrightarrow \mathbb{R}$ is the m th element of $\operatorname{vec}\left(\left[\Re\left\{\mathbf{a}^{u}(\theta) \mathbf{a}^{\mu}(\theta)^{H}\right\} \quad \Im\left\{\mathbf{a}^{\mu}(\theta) \mathbf{a}^{u}(\theta)^{H}\right\}\right]\right)$.

Convex Feasibility Problem

$$
\text { find } \rho^{*} \in V:=\bigcap_{m=1}^{M} V_{m},
$$

where $V_{m}:=\left\{\rho \in \mathcal{H}:\left\langle\rho, g_{m}^{u}\right\rangle=r_{m}^{u}\right\}$ are hyperplanes in \mathcal{H}.

Algorithm 1 - Projection onto a Linear Variety II

- Among all the possible solutions of the feasibility problem, all equivalent based only on the information we have, we choose the minimum norm solution

$$
\hat{\rho}(\theta)=\arg \min _{\rho^{*} \in V}\left\|\rho^{*}\right\|=\sum_{m=1}^{M} \alpha_{m} g_{m}^{u}(\theta)
$$

where $\boldsymbol{\alpha}:=\left[\alpha_{1} \ldots \alpha_{M}\right]$ is a solution to the linear system

$$
\begin{gathered}
\mathbf{r}^{u}=\mathbf{G}^{u} \boldsymbol{\alpha}, \\
\mathbf{G}^{u}=\left[\begin{array}{cccc}
\left\langle g_{1}^{u}, g_{1}^{u}\right\rangle & \left\langle g_{1}^{u}, g_{2}^{u}\right\rangle & \ldots & \left\langle g_{1}^{u}, g_{M}^{u}\right\rangle \\
\left\langle g_{2}^{u}, g_{1}^{u}\right\rangle & \left\langle g_{2}^{u}, g_{2}^{u}\right\rangle & \ldots & \left\langle g_{2}^{u}, g_{M}^{u}\right\rangle \\
\vdots & \vdots & \ddots & \vdots \\
\left\langle g_{M}^{u}, g_{1}^{u}\right\rangle & \left\langle g_{M}^{u}, g_{2}^{u}\right\rangle & \ldots & \left\langle g_{M}^{u}, g_{M}^{u}\right\rangle
\end{array}\right],
\end{gathered}
$$

which corresponds to the orthogonal projection $P_{V}(0)$ of the zero vector onto the linear variety V.

Algorithm 1 - Projection onto a Linear Variety III

- We finally obtain an estimate of $\mathbf{R}^{\mathbf{d}}$ by replacing ρ in the DL covariance expression with its estimate $\hat{\rho}$:

$$
\hat{r}_{m}^{d}=\left\langle\hat{\rho}, g_{m}^{d}\right\rangle=\sum_{l=1}^{M} \alpha_{l}\left\langle g_{l}^{u}, g_{m}^{d}\right\rangle \quad m=1, \ldots, M
$$

which can be rewritten in matrix form as

$$
\hat{\mathbf{r}}^{d}=\mathbf{Q} \boldsymbol{\alpha}
$$

where $\hat{\mathbf{r}}^{d}$ is an estimate of the vector $\mathbf{r}^{d}:=\operatorname{vec}\left(\left[\Re\left\{\mathbf{R}^{d}\right\} \Im\left\{\mathbf{R}^{d}\right\}\right]\right), \boldsymbol{\alpha}$ is a solution to the linear system $\mathbf{r}^{u}=\mathbf{G}^{u} \boldsymbol{\alpha}$, and

$$
\mathbf{Q}=\left[\begin{array}{cccc}
\left\langle g_{1}^{d}, g_{1}^{u}\right\rangle & \left\langle g_{1}^{d}, g_{2}^{u}\right\rangle & \ldots & \left\langle g_{1}^{d}, g_{M}^{u}\right\rangle \\
\left\langle g_{2}^{d}, g_{1}^{u}\right\rangle & \left\langle g_{2}^{d}, g_{2}^{u}\right\rangle & \ldots & \left\langle g_{2}^{d}, g_{M}^{u}\right\rangle \\
\vdots & \vdots & \ddots & \vdots \\
\left\langle g_{M}^{d}, g_{1}^{u}\right\rangle & \left\langle g_{M}^{d}, g_{2}^{u}\right\rangle & \ldots & \left\langle g_{M}^{d}, g_{M}^{u}\right\rangle
\end{array}\right] .
$$

Summary

In summary, the algorithm can be implemented as follows:

Algorithm 1

(1) $\mathbf{r}^{u}:=\operatorname{vec}\left(\left[\Re\left\{\mathbf{R}^{u}\right\} \quad \Im\left\{\mathbf{R}^{u}\right\}\right]\right)$
(2) $\hat{\mathbf{r}}^{d}=\mathrm{Q}\left(\mathbf{G}^{u}\right)^{\dagger} \mathbf{r}^{u}$
(3) $\hat{\mathbf{R}}^{d}=\operatorname{vec}^{-1}\left(\hat{\mathbf{r}}^{d}\right)$
where $\left(\mathbf{G}^{\mu}\right)^{\dagger}$ is the Moore-Penrose pseudoinverse of \mathbf{G}^{μ}.
Note:

- $\mathbf{Q}\left(\mathbf{G}^{u}\right)^{\dagger}$ need to be computed just once for the entire system lifetime.

Algorithm 2 - Enforcing the Positivity of the APS I

- We recall that ρ is a real and non-negative function.
- The real constraint is already taken into account by Algorithm 1.
- But not the non-negativity!

Problem

$$
\text { find } \rho^{*} \in C:=V \cap Z
$$

where $Z=\{\rho \in \mathcal{H}: \forall \theta \in[-\pi, \pi] \quad \rho(\theta) \geq 0\}$ is the closed convex set of non-negative functions in \mathcal{H}, and V is the linear variety considered before.

- Wide literature of iterative projection methods for solving this class of convex feasibility problems.
- We adopt a fast method called extrapolated alternating projection method (EAPM), a particular case of the adaptive projected subgradient method.

Figure: A simple and popular example of iterative projection method: projections onto convex sets (POCS).

Algorithm 2 - Enforcing the Positivity of the APS II

- The projection $P_{V}: \mathcal{H} \rightarrow \mathcal{H}$ onto the set V is given by

$$
P_{V}(x)=x-\sum_{m=1}^{M} \beta_{m} g_{m}^{u}+P_{V}(0)
$$

with $\boldsymbol{\beta}:=\left[\beta_{1} \ldots \beta_{M}\right]$ being a solution to the linear system $\mathbf{b}=\mathbf{G}^{\mu} \boldsymbol{\beta}$ where the m th element of \mathbf{b} is given by $b_{m}=\left\langle x, g_{m}^{u}\right\rangle$.

- The projection $P_{Z}: \mathcal{H} \rightarrow \mathcal{H}$ is given by

$$
P_{Z}(x)= \begin{cases}x(\theta), & \text { if } x(\theta) \geq 0 \\ 0, & \text { otherwise }\end{cases}
$$

- An estimate of $\mathbf{R}^{\mathbf{d}}$ can be finally obtained by evaluating

$$
\hat{r}_{m}^{d}=\left\langle\hat{\rho}, g_{m}^{d}\right\rangle \quad m=1, \ldots, M .
$$

where, unlike Algorithm 1, $\hat{\rho}$ is here computed explicitly with the given iterative projection method.

- Algorithm 2 is more complex: it requires the online evaluation of the inner products, i.e. integrals of the form $\int_{-\pi}^{\pi} x(\theta) d \theta$.

Simulation Details

- BS array: ULA, $f^{u}=1.8 \mathrm{GHz}, f^{d}=1.9 \mathrm{GHz}$, half-wavelength inter-antenna spacing.
- Analytical expression for \mathbf{G}^{u} and \mathbf{Q} is available.
- \mathbf{R}^{u} and \mathbf{R}^{d} randomly drawn, based on the following GSCM-like channel model:

$$
\rho(\theta)=\sum_{q=1}^{Q} f_{q}(\theta) \alpha_{q}, \quad f_{q} \sim \mathcal{N}\left(\phi_{q}, \Delta_{q}^{2}\right), \quad \alpha_{q} \geq 0 \text { s.t. } \quad \sum_{q} \alpha_{q}=1
$$

- The BS has access to a sample covariance $\hat{\mathbf{R}}^{u}$ obtained from 1000 noisy channels samples, with SNR randomly drawn from $[10,30] \mathrm{dB}$.
- Comparison with state-of-the-art techniques for UL to DL spatial covariance conversion. The DL sample covariance, obtained with the same technique and parameters as for the UL, is used as a baseline.

Simulation Results

- Normalized Euclidean distance

$$
\text { MSE }:=\mathbb{E}\left[\frac{\|\mathbf{R}-\hat{\mathbf{R}}\|_{F}^{2}}{\|\mathbf{R}\|_{F}^{2}}\right] .
$$

Figure: Comparison of different DL covariance estimators vs number of BS antennas N .

Advantages of the Proposed DL Covariance Estimation Scheme

- No particular geometry of the array response in assumed.
- No training set is required.
- The performance approaches the baseline given by the DL sample covariance.
- Furthermore, it can be shown that this holds also when applied to some practical CSI aquisition techniques.
- Algorithm 1 is extremely simple (a matrix-vector multiplication).
- Furthermore, the performances in terms of rate in practical applications are already close to the bound given by the DL sample covariance.
- Due to its generality, it can be shown that the proposed scheme can be extended also to more complex channel models that take into account 3D propagation and polarization effects.

