

Information	Processing
& Algorithms	Laboratory

Website: http://signal.ee.psu.edu/ORDSR.html

Supported by NSF Career Award to V. Monga.

Contact: tiantong@psu.edu hojjat@psu.edu

ORTHOGONALLY REGULARIZED DEEP NETWORKS FOR IMAGE SUPER-RESOLUTION TIANTONG GUO, HOJJAT SEYED MOUSAVI, VISHAL MONGA | THE PENNSYLVANIA STATE UNIVERSITY

$$\mathbf{x} - \mathbf{y} \|_{2}^{2} + \sigma \frac{1}{2} \sum_{l} \|\mathbf{W}_{l}\|_{2}^{2} + \gamma \frac{1}{2} \sum_{(i,j), i \neq j} \|vec(\mathbf{w}_{i})^{T}vec(\mathbf{w}_{j}) - \epsilon\|_{2}^{2} + \lambda \frac{1}{2} \sum_{i \neq j} \frac{1}{2} \sum_{(i,j), i \neq j} \|vec(\mathbf{w}_{i})^{T}vec(\mathbf{w}_{j}) - \epsilon\|_{2}^{2} + \lambda \frac{1}{2} \sum_{i \neq j} \frac{1}{2} \sum_{i \neq$$

$$\forall i \neq j, \| vec(\mathbf{w}_i)^T vec(\mathbf{w}_j) - \epsilon \|_2^2 = 0$$

$$\|var(\mathbf{w}_t) - var(\mathbf{w}_t^{\mathsf{dct}})\|_2^2 = 0$$

$$\begin{aligned} \frac{\partial \mathbf{L}}{\partial \mathbf{W}_{l}^{a}} &= - \langle (\hat{\mathbf{y}} - \mathbf{y}), \frac{\partial \mathbf{y}}{\partial \mathbf{W}_{l}^{a}} \rangle_{F} + \sigma \langle \mathbf{W}_{l}, \frac{\partial \mathbf{W}_{l}}{\partial \mathbf{W}_{l}^{a}} \\ \frac{\partial \mathbf{L}}{\partial \mathbf{w}_{i}^{a}} &= - \langle (\hat{\mathbf{y}} - \mathbf{y}), \frac{\partial \mathbf{y}}{\partial \mathbf{w}_{i}^{a}} \rangle_{F} + \gamma \sum_{(j)} \left(vec(\mathbf{w}_{i})^{T} vec(\mathbf{w}_{j}) - vec(\mathbf{w}_{j}) - vec(\mathbf{w}_{j}) \right) \\ &+ \lambda \frac{\partial var(\mathbf{w}_{i})}{\partial \mathbf{w}_{i}^{a}} \left(var(\mathbf{w}_{i}) - vec(\mathbf{w}_{j}) \right) - vec(\mathbf{w}_{j}) - vec(\mathbf{w}_{j}) - vec(\mathbf{w}_{j}) \right) \end{aligned}$$

 $ar(\mathbf{w}_i^{\mathsf{dct}}))$

Training Data Used (%)

For an input LR image x, ORDSR generates its SR version \hat{y} as follows:

1 The input x is convolved with CDCT layer producing a DCT cube $\{f_i\}_{i=1}^{64}$

2 The DCT cube of x is divided into f_{low} and f_{high} corresponding to low and high-

3 A D-layer CNN takes f_{high} as input and recovers the missing high-frequency information using a residual network structure, generating $\hat{\mathbf{f}}_{high}$.

The $\hat{\mathbf{f}}_{high}$ is appended to \mathbf{f}_{low} forming the SR-DCT cube $\{\hat{\mathbf{f}}_i\}_{i=1}^{64}$.

The SR-DCT cube $\{\hat{\mathbf{f}}_i\}_{i=1}^{64}$ is transpose convolved with the filters in the CDCT/transform layer (to perform the IDCT/inverse transform) generating \hat{y} .

		Bicubic		ScSR		FSRCNN	
		[Baseline]		[TIP 10]		[ECCV 16]	
Set5	x2	33.64	0.9292	35.78	0.9485	36.94	0.9558
	x3	30.39	0.8678	31.34	0.8869	33.06	0.9140
	x4	28.42	0.8101	29.07	0.8263	30.55	0.8657
	x2	30.22	0.8683	31.64	0.8940	32.54	0.9088
Set14	x3	27.53	0.7737	28.19	0.7977	29.37	0.8242
	x4	25.99	0.7023	26.40	0.7218	27.50	0.7535
		SRCNN		VDSR		ORDSR	
		[PAMI 16]		[CVPR 16]		[proposed]	
	x2	36.66	0.9542	37.52	0.9586	37.48	0.9574
Set5	x3	32.75	0.9090	33.66	0.9212	33.74	0.9221
	x4	30.48	0.8628	31.35	0.8820	31.38	0.8847
Set14	x2	32.42	0.9063	33.02	0.9102	33.04	0.9109
	xЗ	29.28	0.8209	29.77	0.8308	29.81	0.8300
	x4	27.40	0.7503	28.01	0.7664	28.06	0.7664

Best results shown in red, second best shown in blue.

Training Data Used (%) Training Data Used (%) iPAL April 2018