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Background
• Most	of	the	statistical	LMs		are	conditional	models
𝑝 𝑠 = 	𝑝 𝑤&,… , 𝑤) = 	∏ 𝑝 𝑤+ 𝑤+,-.&,… ,𝑤+,&))

+0&
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• The	locally-conditional	design	limits	the	ability	of	the	model	in	
exploiting	whole	sentence	structure.	
• It	makes	implicit	independence	assumptions	that	may	not	be	always	true.	
• Global	sentence	information	may	be	difficult	to	capture.	

• Whole	sentence	maximum	entropy	LMs	directly	models	𝑝 𝑠 ,	
probability	of	a	sentence	or	a	utterance.	(Rosenfeld,	1997;	Chen,	1999)
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• The	locally-conditional	design	limits	the	ability	of	the	model	in	
exploiting	whole	sentence	structure.	
• It	makes	implicit	independence	assumptions	that	may	not	be	always	true.	
• Global	sentence	information	may	be	difficult	to	capture.	

• Whole	sentence	maximum	entropy	LMs	directly	models	𝑝 𝑠 ,	
probability	of	a	sentence	or	a	utterance.	(Rosenfeld,	1997;	Chen,	1999)

• Recurrent	neural	network	(RNN)	LMs	are	proposed	to	capture	longer	
histories	(Hochreiter,	1997;	Mikolov,	2010)

6Introduction



Whole	sentence	Neural	Language	Models

• We	combine	whole-sentence	LMs	with	LSTM.	
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• We	combine	whole-sentence	LMs	with	LSTM.	

• Initial	attempt

𝑝 𝑠 = softmax 𝑓 𝑠 = &
9
: exp 𝑓 𝑠 = &
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: exp 𝑓 𝑠

• Calculating	𝑍 is	infeasible,	since	it	involves	summing	all	possible	
sentence	𝑠.	

• To	train	an	un-normalized	model	instead	!	
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• We	combine	whole-sentence	LMs	with	LSTM.	
• We	use	Noise	Contrastive	Estimation	(Gutmann,	2012) for	training	to	
avoid	normalization.	

• Our	model
• does	not	require	any	softmax computation	to	compute	conditional	
probabilities	of	individual	words.	
• generates	a	single	output	score	for	the	whole	sentence	which	we	treat	as	an	
un-normalized	probability.	
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Noise	Contrastive	Estimation	

Training

• NCE	was	first	introduced	as	a	sampling-based	approach	for	
unnormalized training	of	statistical	models.	(Gutmann,	2012)
• It	has	been	widely	used	for	improving	the	scalability	of	conditional	
neural	net	based	LMs.	(A.	Mnih,	2012;	Chen,	2017)
• With	sufficient	samples,	the	model	learns	the	data	distribution,	also	
implicitly	constrains	the	normalization	term	to	be	1.	



• We	use	back-off	n-gram	LMs	built	on	the	training	data	as	noise	
samplers
• Two	types	of	noise	samples:

1. Generate	word	sequences	using	noise	sampler	model	(RAND).	
Example:	March	the	twenty	fifth	of	March	nineteen	twenty	thirteen

2. Sample	from	an	edit	transducer	(Mohri 2002).	We	first	randomly	select	one	
sentence	from	the	training	data,	then	randomly	select	N	positions	to	
introduce	an	insertion	(INS),	substitution	(SUB)	or	deletion	(DEL)	error.		
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Sequence	Identification	tasks

Experimental	Results

• Proof	of	concept:	validate	the	idea	that	the	model	can	detect	patterns	
relying	on	entire	sentence	structures.	
• Data
• Palindrome.	

• 1M-word	corpus	with	10-word	vocabulary.	
• Example:	the	cat	ran	fast	ran	cat	the

• Lexicographically-ordered	words.	
• 1M-word	corpus	with	15-word	vocabulary.	
• Example:	bottle	cup	haha hello	kitten	that	what

• Expressing	dates.	
• 7M-word	corpus	with	a	70-word	vocabulary.	
• Example:	January	first	nineteen	oh	one
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Sequence	Identification	tasks

Experimental	Results

• Task
1. 10%	of	the	generated	data	was	used	as	the	test	set.	
2. Imposter	sentences	are	generated	by	substituting	one	word
3. Scores	are	assigned	by	the	model	for	each	sentence.	A	binary	linear	classifier	

will	be	trained	to	classify	these	scores	into	two	classes.	
4. Performance	is	evaluated	by	its	classification	accuracy.	

July	the	twentieth	nineteen	eighty1
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Experimental	Results	– Sequence	Identification	tasks

Experimental	Results

• Model	configuration
• One-layer	BiLSTM
• Embedding	size	of	200	with	700	hidden	units

w1

Emb. Emb. Emb.

w2 wT

LSTM LSTM LSTM

LSTM LSTM LSTM

concat.

Linear
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Experimental	Results	– Sequence	Identification	tasks

Experimental	Results

• For	all	three	tasks,	accuracy	on	average	is	above	99%.	
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Experimental	Results	– Sequence	Identification	tasks

Experimental	Results

• A	closer	look	on	DATE	test	set
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Experimental	Results	– Sequence	Identification	tasks

Experimental	Results

• We	hypothesize	that	it	is	because	the	sentence	model	does	not	make	
conditional	independence	assumptions	inherent	in	the	locally-
conditional	models.
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Experimental	Results	– Speech	Recognition

Experimental	Results

• Test	set
• Hub5	Switchboard-2000	benchmark	task	(SWB)
• In-house	Conversational	Interaction	task	(CI)
Test	set	is	of	duration	1.5	hours,	consisting	of	accented	data	covering	spoken	

interaction	in	concierge	and	other	similar	application	domains.	
Examples:

• can	i request	a	room	on	a	lower	floor
• is	there	a	charge	to	use	the	fitness	room

• Evaluation	on	N-best	(N=100)	list	rescoring.	
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Experimental	Results	– Speech	Recognition

Experimental	Results

• Model	configuration
• One	layer	uni-directional	LSTM

• NCE	Noise	samples	drawn	from	1-edit	to	3-edit

Test set Projection layer Hidden	layer

SWB 512 512

CI 256 256

w1

Linear

Emb. Emb. Emb.

w2 wT

LSTM LSTM LSTM

Mean	pooling
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Experimental	Results	– Speech	Recognition

Experimental	Results

• Rescoring	result	(word	error	rate	%)
SWB Conversational	Interaction

N-gram 6.9 8.5

+	word	LSTM 6.5 8.5

+	sentence	Model 6.3 8.3
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Experimental	Results	– Speech	Recognition

Experimental	Results

• Rescoring	result	(word	error	rate	%)

• Example

SWB Conversational	Interaction

N-gram 6.9 8.5

+	word	LSTM 6.5 8.5

+	sentence	Model 6.3 8.3

Reference actually	we	were	looking	at	the	saturn S	L	two

N-gram LM actually	we	were	looking	at	the saturday I	sell	to

+	Word	LSTM actually	we	were	looking	at	the	saturday S	L	too

+	Sentence	LM actually	we	were	looking	at	the saturn S	L	too
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Experimental	Results	– Speech	Recognition

Experimental	 Results

• Rescoring	result	(word	error	rate	%)

• Example

SWB Conversational	Interaction

N-gram 6.9 8.5

+	word	LSTM 6.5 8.5

+	sentence	Model 6.3 8.3

Reference Could you	send	some	soda	to	room	three	four	five

N-gram LM	
+	word	LSTM

Could you	send	some	sort	of	to	room	three	four	 five

+	Sentence	LM Could you	send	some	soda	to	room	three	four	five
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Conclusion

Conclusion

• We	propose	whole	sentence	neural	language	models,	which	
estimates	the	probability	for	the	entire	word	sequence	directly	with	
LSTM.	
• To	avoid	normalizing	over	the	whole	sentence	space,	we	apply	NCE	
for	training	our	recurrent	nets.	
• The	preliminary	results	on	a	range	of	tasks	show	that	the	model	
captures	information	out	from	locally-conditional	constraints.	
• The	proposed	approach	can	be	extended	to	other	neural	network	
architectures.	
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